Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(54v^{4}\right)^{1}\times \frac{1}{9v^{5}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
54^{1}\left(v^{4}\right)^{1}\times \frac{1}{9}\times \frac{1}{v^{5}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
54^{1}\times \frac{1}{9}\left(v^{4}\right)^{1}\times \frac{1}{v^{5}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
54^{1}\times \frac{1}{9}v^{4}v^{5\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
54^{1}\times \frac{1}{9}v^{4}v^{-5}
Whakareatia 5 ki te -1.
54^{1}\times \frac{1}{9}v^{4-5}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
54^{1}\times \frac{1}{9}\times \frac{1}{v}
Tāpirihia ngā taupū 4 me -5.
54\times \frac{1}{9}\times \frac{1}{v}
Hīkina te 54 ki te pū 1.
6\times \frac{1}{v}
Whakareatia 54 ki te \frac{1}{9}.
\frac{54^{1}v^{4}}{9^{1}v^{5}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{54^{1}v^{4-5}}{9^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{54^{1}\times \frac{1}{v}}{9^{1}}
Tango 5 mai i 4.
6\times \frac{1}{v}
Whakawehe 54 ki te 9.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{54}{9}v^{4-5})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}v}(6\times \frac{1}{v})
Mahia ngā tātaitanga.
-6v^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-6v^{-2}
Mahia ngā tātaitanga.