Aromātai
\frac{51\sqrt{10}}{784}\approx 0.205709389
Tohaina
Kua tāruatia ki te papatopenga
\frac{51}{56}\times \frac{\sqrt{5}}{\sqrt{98}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{98}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{98}}.
\frac{51}{56}\times \frac{\sqrt{5}}{7\sqrt{2}}
Tauwehea te 98=7^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 2} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{2}. Tuhia te pūtakerua o te 7^{2}.
\frac{51}{56}\times \frac{\sqrt{5}\sqrt{2}}{7\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{7\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{51}{56}\times \frac{\sqrt{5}\sqrt{2}}{7\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{51}{56}\times \frac{\sqrt{10}}{7\times 2}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{51}{56}\times \frac{\sqrt{10}}{14}
Whakareatia te 7 ki te 2, ka 14.
\frac{51\sqrt{10}}{56\times 14}
Me whakarea te \frac{51}{56} ki te \frac{\sqrt{10}}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{51\sqrt{10}}{784}
Whakareatia te 56 ki te 14, ka 784.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}