Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{51}{56}\times \frac{\sqrt{5}}{\sqrt{98}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{98}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{98}}.
\frac{51}{56}\times \frac{\sqrt{5}}{7\sqrt{2}}
Tauwehea te 98=7^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 2} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{2}. Tuhia te pūtakerua o te 7^{2}.
\frac{51}{56}\times \frac{\sqrt{5}\sqrt{2}}{7\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{7\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{51}{56}\times \frac{\sqrt{5}\sqrt{2}}{7\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{51}{56}\times \frac{\sqrt{10}}{7\times 2}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{51}{56}\times \frac{\sqrt{10}}{14}
Whakareatia te 7 ki te 2, ka 14.
\frac{51\sqrt{10}}{56\times 14}
Me whakarea te \frac{51}{56} ki te \frac{\sqrt{10}}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{51\sqrt{10}}{784}
Whakareatia te 56 ki te 14, ka 784.