Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{51}{100}+\frac{200}{100}=\frac{29}{50}
Me tahuri te 2 ki te hautau \frac{200}{100}.
\frac{51+200}{100}=\frac{29}{50}
Tā te mea he rite te tauraro o \frac{51}{100} me \frac{200}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{251}{100}=\frac{29}{50}
Tāpirihia te 51 ki te 200, ka 251.
\frac{251}{100}=\frac{58}{100}
Ko te maha noa iti rawa atu o 100 me 50 ko 100. Me tahuri \frac{251}{100} me \frac{29}{50} ki te hautau me te tautūnga 100.
\text{false}
Whakatauritea te \frac{251}{100} me te \frac{58}{100}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}