Whakaoti mō x
x=\frac{\sqrt{4921}+11}{100}\approx 0.811498396
x=\frac{11-\sqrt{4921}}{100}\approx -0.591498396
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{50}{49}x^{2}-\frac{11}{49}x-\frac{24}{49}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{11}{49}\right)±\sqrt{\left(-\frac{11}{49}\right)^{2}-4\times \frac{50}{49}\left(-\frac{24}{49}\right)}}{2\times \frac{50}{49}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{50}{49} mō a, -\frac{11}{49} mō b, me -\frac{24}{49} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{11}{49}\right)±\sqrt{\frac{121}{2401}-4\times \frac{50}{49}\left(-\frac{24}{49}\right)}}{2\times \frac{50}{49}}
Pūruatia -\frac{11}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{11}{49}\right)±\sqrt{\frac{121}{2401}-\frac{200}{49}\left(-\frac{24}{49}\right)}}{2\times \frac{50}{49}}
Whakareatia -4 ki te \frac{50}{49}.
x=\frac{-\left(-\frac{11}{49}\right)±\sqrt{\frac{121+4800}{2401}}}{2\times \frac{50}{49}}
Whakareatia -\frac{200}{49} ki te -\frac{24}{49} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{11}{49}\right)±\sqrt{\frac{703}{343}}}{2\times \frac{50}{49}}
Tāpiri \frac{121}{2401} ki te \frac{4800}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{11}{49}\right)±\frac{\sqrt{4921}}{49}}{2\times \frac{50}{49}}
Tuhia te pūtakerua o te \frac{703}{343}.
x=\frac{\frac{11}{49}±\frac{\sqrt{4921}}{49}}{2\times \frac{50}{49}}
Ko te tauaro o -\frac{11}{49} ko \frac{11}{49}.
x=\frac{\frac{11}{49}±\frac{\sqrt{4921}}{49}}{\frac{100}{49}}
Whakareatia 2 ki te \frac{50}{49}.
x=\frac{\sqrt{4921}+11}{\frac{100}{49}\times 49}
Nā, me whakaoti te whārite x=\frac{\frac{11}{49}±\frac{\sqrt{4921}}{49}}{\frac{100}{49}} ina he tāpiri te ±. Tāpiri \frac{11}{49} ki te \frac{\sqrt{4921}}{49}.
x=\frac{\sqrt{4921}+11}{100}
Whakawehe \frac{11+\sqrt{4921}}{49} ki te \frac{100}{49} mā te whakarea \frac{11+\sqrt{4921}}{49} ki te tau huripoki o \frac{100}{49}.
x=\frac{11-\sqrt{4921}}{\frac{100}{49}\times 49}
Nā, me whakaoti te whārite x=\frac{\frac{11}{49}±\frac{\sqrt{4921}}{49}}{\frac{100}{49}} ina he tango te ±. Tango \frac{\sqrt{4921}}{49} mai i \frac{11}{49}.
x=\frac{11-\sqrt{4921}}{100}
Whakawehe \frac{11-\sqrt{4921}}{49} ki te \frac{100}{49} mā te whakarea \frac{11-\sqrt{4921}}{49} ki te tau huripoki o \frac{100}{49}.
x=\frac{\sqrt{4921}+11}{100} x=\frac{11-\sqrt{4921}}{100}
Kua oti te whārite te whakatau.
\frac{50}{49}x^{2}-\frac{11}{49}x-\frac{24}{49}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{50}{49}x^{2}-\frac{11}{49}x-\frac{24}{49}-\left(-\frac{24}{49}\right)=-\left(-\frac{24}{49}\right)
Me tāpiri \frac{24}{49} ki ngā taha e rua o te whārite.
\frac{50}{49}x^{2}-\frac{11}{49}x=-\left(-\frac{24}{49}\right)
Mā te tango i te -\frac{24}{49} i a ia ake anō ka toe ko te 0.
\frac{50}{49}x^{2}-\frac{11}{49}x=\frac{24}{49}
Tango -\frac{24}{49} mai i 0.
\frac{\frac{50}{49}x^{2}-\frac{11}{49}x}{\frac{50}{49}}=\frac{\frac{24}{49}}{\frac{50}{49}}
Whakawehea ngā taha e rua o te whārite ki te \frac{50}{49}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{\frac{11}{49}}{\frac{50}{49}}\right)x=\frac{\frac{24}{49}}{\frac{50}{49}}
Mā te whakawehe ki te \frac{50}{49} ka wetekia te whakareanga ki te \frac{50}{49}.
x^{2}-\frac{11}{50}x=\frac{\frac{24}{49}}{\frac{50}{49}}
Whakawehe -\frac{11}{49} ki te \frac{50}{49} mā te whakarea -\frac{11}{49} ki te tau huripoki o \frac{50}{49}.
x^{2}-\frac{11}{50}x=\frac{12}{25}
Whakawehe \frac{24}{49} ki te \frac{50}{49} mā te whakarea \frac{24}{49} ki te tau huripoki o \frac{50}{49}.
x^{2}-\frac{11}{50}x+\left(-\frac{11}{100}\right)^{2}=\frac{12}{25}+\left(-\frac{11}{100}\right)^{2}
Whakawehea te -\frac{11}{50}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{100}. Nā, tāpiria te pūrua o te -\frac{11}{100} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{11}{50}x+\frac{121}{10000}=\frac{12}{25}+\frac{121}{10000}
Pūruatia -\frac{11}{100} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{11}{50}x+\frac{121}{10000}=\frac{4921}{10000}
Tāpiri \frac{12}{25} ki te \frac{121}{10000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{11}{100}\right)^{2}=\frac{4921}{10000}
Tauwehea x^{2}-\frac{11}{50}x+\frac{121}{10000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{100}\right)^{2}}=\sqrt{\frac{4921}{10000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{100}=\frac{\sqrt{4921}}{100} x-\frac{11}{100}=-\frac{\sqrt{4921}}{100}
Whakarūnātia.
x=\frac{\sqrt{4921}+11}{100} x=\frac{11-\sqrt{4921}}{100}
Me tāpiri \frac{11}{100} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}