Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{50a^{3}\left(-b^{5}\right)^{3}}{25\left(ab^{6}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{50a^{3}\left(-b^{5}\right)^{3}}{25a^{2}\left(b^{6}\right)^{2}}
Whakarohaina te \left(ab^{6}\right)^{2}.
\frac{50a^{3}\left(-b^{5}\right)^{3}}{25a^{2}b^{12}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
\frac{2a\left(-b^{5}\right)^{3}}{b^{12}}
Me whakakore tahi te 25a^{2} i te taurunga me te tauraro.
\frac{2a\left(-1\right)^{3}\left(b^{5}\right)^{3}}{b^{12}}
Whakarohaina te \left(-b^{5}\right)^{3}.
\frac{2a\left(-1\right)^{3}b^{15}}{b^{12}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 3 kia riro ai te 15.
\frac{2a\left(-1\right)b^{15}}{b^{12}}
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\frac{-2ab^{15}}{b^{12}}
Whakareatia te 2 ki te -1, ka -2.
-2ab^{3}
Me whakakore tahi te b^{12} i te taurunga me te tauraro.
\frac{50a^{3}\left(-b^{5}\right)^{3}}{25\left(ab^{6}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{50a^{3}\left(-b^{5}\right)^{3}}{25a^{2}\left(b^{6}\right)^{2}}
Whakarohaina te \left(ab^{6}\right)^{2}.
\frac{50a^{3}\left(-b^{5}\right)^{3}}{25a^{2}b^{12}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
\frac{2a\left(-b^{5}\right)^{3}}{b^{12}}
Me whakakore tahi te 25a^{2} i te taurunga me te tauraro.
\frac{2a\left(-1\right)^{3}\left(b^{5}\right)^{3}}{b^{12}}
Whakarohaina te \left(-b^{5}\right)^{3}.
\frac{2a\left(-1\right)^{3}b^{15}}{b^{12}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te 3 kia riro ai te 15.
\frac{2a\left(-1\right)b^{15}}{b^{12}}
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\frac{-2ab^{15}}{b^{12}}
Whakareatia te 2 ki te -1, ka -2.
-2ab^{3}
Me whakakore tahi te b^{12} i te taurunga me te tauraro.