Aromātai
\frac{4x^{2}+7y^{2}}{6xy}
Tauwehe
\frac{4x^{2}+7y^{2}}{6xy}
Tohaina
Kua tāruatia ki te papatopenga
\frac{5y}{4x}+\frac{2x}{3y}-\frac{y}{12x}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{5y\times 3y}{12xy}+\frac{2x\times 4x}{12xy}-\frac{y}{12x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4x me 3y ko 12xy. Whakareatia \frac{5y}{4x} ki te \frac{3y}{3y}. Whakareatia \frac{2x}{3y} ki te \frac{4x}{4x}.
\frac{5y\times 3y+2x\times 4x}{12xy}-\frac{y}{12x}
Tā te mea he rite te tauraro o \frac{5y\times 3y}{12xy} me \frac{2x\times 4x}{12xy}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15y^{2}+8x^{2}}{12xy}-\frac{y}{12x}
Mahia ngā whakarea i roto o 5y\times 3y+2x\times 4x.
\frac{15y^{2}+8x^{2}}{12xy}-\frac{yy}{12xy}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12xy me 12x ko 12xy. Whakareatia \frac{y}{12x} ki te \frac{y}{y}.
\frac{15y^{2}+8x^{2}-yy}{12xy}
Tā te mea he rite te tauraro o \frac{15y^{2}+8x^{2}}{12xy} me \frac{yy}{12xy}, me tango rāua mā te tango i ō raua taurunga.
\frac{15y^{2}+8x^{2}-y^{2}}{12xy}
Mahia ngā whakarea i roto o 15y^{2}+8x^{2}-yy.
\frac{14y^{2}+8x^{2}}{12xy}
Whakakotahitia ngā kupu rite i 15y^{2}+8x^{2}-y^{2}.
\frac{2\left(4x^{2}+7y^{2}\right)}{12xy}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{14y^{2}+8x^{2}}{12xy}.
\frac{4x^{2}+7y^{2}}{6xy}
Me whakakore tahi te 2 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}