Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(5x-7\right)-6\left(1-x\right)=2\left(5-x\right)+3\left(3x-2\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2,6,4.
20x-28-6\left(1-x\right)=2\left(5-x\right)+3\left(3x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 5x-7.
20x-28-6+6x=2\left(5-x\right)+3\left(3x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te 1-x.
20x-34+6x=2\left(5-x\right)+3\left(3x-2\right)
Tangohia te 6 i te -28, ka -34.
26x-34=2\left(5-x\right)+3\left(3x-2\right)
Pahekotia te 20x me 6x, ka 26x.
26x-34=10-2x+3\left(3x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5-x.
26x-34=10-2x+9x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-2.
26x-34=10+7x-6
Pahekotia te -2x me 9x, ka 7x.
26x-34=4+7x
Tangohia te 6 i te 10, ka 4.
26x-34-7x=4
Tangohia te 7x mai i ngā taha e rua.
19x-34=4
Pahekotia te 26x me -7x, ka 19x.
19x=4+34
Me tāpiri te 34 ki ngā taha e rua.
19x=38
Tāpirihia te 4 ki te 34, ka 38.
x=\frac{38}{19}
Whakawehea ngā taha e rua ki te 19.
x=2
Whakawehea te 38 ki te 19, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}