Whakaoti mō x
x=8
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-5\right)\left(5x-5\right)=\left(2x+5\right)\left(2x-11\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{5}{2},5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(2x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+5,x-5.
5x^{2}-30x+25=\left(2x+5\right)\left(2x-11\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te 5x-5 ka whakakotahi i ngā kupu rite.
5x^{2}-30x+25=4x^{2}-12x-55
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+5 ki te 2x-11 ka whakakotahi i ngā kupu rite.
5x^{2}-30x+25-4x^{2}=-12x-55
Tangohia te 4x^{2} mai i ngā taha e rua.
x^{2}-30x+25=-12x-55
Pahekotia te 5x^{2} me -4x^{2}, ka x^{2}.
x^{2}-30x+25+12x=-55
Me tāpiri te 12x ki ngā taha e rua.
x^{2}-18x+25=-55
Pahekotia te -30x me 12x, ka -18x.
x^{2}-18x+25+55=0
Me tāpiri te 55 ki ngā taha e rua.
x^{2}-18x+80=0
Tāpirihia te 25 ki te 55, ka 80.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 80}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -18 mō b, me 80 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 80}}{2}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-320}}{2}
Whakareatia -4 ki te 80.
x=\frac{-\left(-18\right)±\sqrt{4}}{2}
Tāpiri 324 ki te -320.
x=\frac{-\left(-18\right)±2}{2}
Tuhia te pūtakerua o te 4.
x=\frac{18±2}{2}
Ko te tauaro o -18 ko 18.
x=\frac{20}{2}
Nā, me whakaoti te whārite x=\frac{18±2}{2} ina he tāpiri te ±. Tāpiri 18 ki te 2.
x=10
Whakawehe 20 ki te 2.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{18±2}{2} ina he tango te ±. Tango 2 mai i 18.
x=8
Whakawehe 16 ki te 2.
x=10 x=8
Kua oti te whārite te whakatau.
\left(x-5\right)\left(5x-5\right)=\left(2x+5\right)\left(2x-11\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{5}{2},5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(2x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+5,x-5.
5x^{2}-30x+25=\left(2x+5\right)\left(2x-11\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te 5x-5 ka whakakotahi i ngā kupu rite.
5x^{2}-30x+25=4x^{2}-12x-55
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+5 ki te 2x-11 ka whakakotahi i ngā kupu rite.
5x^{2}-30x+25-4x^{2}=-12x-55
Tangohia te 4x^{2} mai i ngā taha e rua.
x^{2}-30x+25=-12x-55
Pahekotia te 5x^{2} me -4x^{2}, ka x^{2}.
x^{2}-30x+25+12x=-55
Me tāpiri te 12x ki ngā taha e rua.
x^{2}-18x+25=-55
Pahekotia te -30x me 12x, ka -18x.
x^{2}-18x=-55-25
Tangohia te 25 mai i ngā taha e rua.
x^{2}-18x=-80
Tangohia te 25 i te -55, ka -80.
x^{2}-18x+\left(-9\right)^{2}=-80+\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-18x+81=-80+81
Pūrua -9.
x^{2}-18x+81=1
Tāpiri -80 ki te 81.
\left(x-9\right)^{2}=1
Tauwehea x^{2}-18x+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-9=1 x-9=-1
Whakarūnātia.
x=10 x=8
Me tāpiri 9 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}