Whakaoti mō x
x = -\frac{19}{6} = -3\frac{1}{6} \approx -3.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(5x-4\right)+2\times 2-3\left(2x-7\right)=18\left(x-1\right)
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,3x-3,2x-2.
30x-24+2\times 2-3\left(2x-7\right)=18\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 5x-4.
30x-24+4-3\left(2x-7\right)=18\left(x-1\right)
Whakareatia te 2 ki te 2, ka 4.
30x-20-3\left(2x-7\right)=18\left(x-1\right)
Tāpirihia te -24 ki te 4, ka -20.
30x-20-6x+21=18\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 2x-7.
24x-20+21=18\left(x-1\right)
Pahekotia te 30x me -6x, ka 24x.
24x+1=18\left(x-1\right)
Tāpirihia te -20 ki te 21, ka 1.
24x+1=18x-18
Whakamahia te āhuatanga tohatoha hei whakarea te 18 ki te x-1.
24x+1-18x=-18
Tangohia te 18x mai i ngā taha e rua.
6x+1=-18
Pahekotia te 24x me -18x, ka 6x.
6x=-18-1
Tangohia te 1 mai i ngā taha e rua.
6x=-19
Tangohia te 1 i te -18, ka -19.
x=\frac{-19}{6}
Whakawehea ngā taha e rua ki te 6.
x=-\frac{19}{6}
Ka taea te hautanga \frac{-19}{6} te tuhi anō ko -\frac{19}{6} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}