Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(5x-16\right)=-\left(x+8\right)+4\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 6,12,3.
10x-32=-\left(x+8\right)+4\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5x-16.
10x-32=-x-8+4\left(x+1\right)
Hei kimi i te tauaro o x+8, kimihia te tauaro o ia taurangi.
10x-32=-x-8+4x+4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
10x-32=3x-8+4
Pahekotia te -x me 4x, ka 3x.
10x-32=3x-4
Tāpirihia te -8 ki te 4, ka -4.
10x-32-3x=-4
Tangohia te 3x mai i ngā taha e rua.
7x-32=-4
Pahekotia te 10x me -3x, ka 7x.
7x=-4+32
Me tāpiri te 32 ki ngā taha e rua.
7x=28
Tāpirihia te -4 ki te 32, ka 28.
x=\frac{28}{7}
Whakawehea ngā taha e rua ki te 7.
x=4
Whakawehea te 28 ki te 7, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}