Whakaoti mō x
x = \frac{183}{7} = 26\frac{1}{7} \approx 26.142857143
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-15=\frac{90}{7}\times 9
Me whakarea ngā taha e rua ki te 9.
5x-15=\frac{90\times 9}{7}
Tuhia te \frac{90}{7}\times 9 hei hautanga kotahi.
5x-15=\frac{810}{7}
Whakareatia te 90 ki te 9, ka 810.
5x=\frac{810}{7}+15
Me tāpiri te 15 ki ngā taha e rua.
5x=\frac{810}{7}+\frac{105}{7}
Me tahuri te 15 ki te hautau \frac{105}{7}.
5x=\frac{810+105}{7}
Tā te mea he rite te tauraro o \frac{810}{7} me \frac{105}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
5x=\frac{915}{7}
Tāpirihia te 810 ki te 105, ka 915.
x=\frac{\frac{915}{7}}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{915}{7\times 5}
Tuhia te \frac{\frac{915}{7}}{5} hei hautanga kotahi.
x=\frac{915}{35}
Whakareatia te 7 ki te 5, ka 35.
x=\frac{183}{7}
Whakahekea te hautanga \frac{915}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}