Whakaoti mō x
x = \frac{79}{15} = 5\frac{4}{15} \approx 5.266666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(5x-1\right)-10\left(1+x\right)=60-5\left(x-1\right)
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,4.
20x-4-10\left(1+x\right)=60-5\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 5x-1.
20x-4-10-10x=60-5\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te 1+x.
20x-14-10x=60-5\left(x-1\right)
Tangohia te 10 i te -4, ka -14.
10x-14=60-5\left(x-1\right)
Pahekotia te 20x me -10x, ka 10x.
10x-14=60-5x+5
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-1.
10x-14=65-5x
Tāpirihia te 60 ki te 5, ka 65.
10x-14+5x=65
Me tāpiri te 5x ki ngā taha e rua.
15x-14=65
Pahekotia te 10x me 5x, ka 15x.
15x=65+14
Me tāpiri te 14 ki ngā taha e rua.
15x=79
Tāpirihia te 65 ki te 14, ka 79.
x=\frac{79}{15}
Whakawehea ngā taha e rua ki te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}