Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5x}{\left(x-3\right)\left(x+3\right)}+\frac{2}{x+3}
Tauwehea te x^{2}-9.
\frac{5x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-3\right)\left(x+3\right) me x+3 ko \left(x-3\right)\left(x+3\right). Whakareatia \frac{2}{x+3} ki te \frac{x-3}{x-3}.
\frac{5x+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{5x}{\left(x-3\right)\left(x+3\right)} me \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5x+2x-6}{\left(x-3\right)\left(x+3\right)}
Mahia ngā whakarea i roto o 5x+2\left(x-3\right).
\frac{7x-6}{\left(x-3\right)\left(x+3\right)}
Whakakotahitia ngā kupu rite i 5x+2x-6.
\frac{7x-6}{x^{2}-9}
Whakarohaina te \left(x-3\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-3\right)\left(x+3\right)}+\frac{2}{x+3})
Tauwehea te x^{2}-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-3\right)\left(x+3\right) me x+3 ko \left(x-3\right)\left(x+3\right). Whakareatia \frac{2}{x+3} ki te \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)})
Tā te mea he rite te tauraro o \frac{5x}{\left(x-3\right)\left(x+3\right)} me \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+2x-6}{\left(x-3\right)\left(x+3\right)})
Mahia ngā whakarea i roto o 5x+2\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-6}{\left(x-3\right)\left(x+3\right)})
Whakakotahitia ngā kupu rite i 5x+2x-6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-6}{x^{2}-9})
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
\frac{\left(x^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}-6)-\left(7x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-9)}{\left(x^{2}-9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-9\right)\times 7x^{1-1}-\left(7x^{1}-6\right)\times 2x^{2-1}}{\left(x^{2}-9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-9\right)\times 7x^{0}-\left(7x^{1}-6\right)\times 2x^{1}}{\left(x^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}\times 7x^{0}-9\times 7x^{0}-\left(7x^{1}\times 2x^{1}-6\times 2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{7x^{2}-9\times 7x^{0}-\left(7\times 2x^{1+1}-6\times 2x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{7x^{2}-63x^{0}-\left(14x^{2}-12x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{7x^{2}-63x^{0}-14x^{2}-\left(-12x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(7-14\right)x^{2}-63x^{0}-\left(-12x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-7x^{2}-63x^{0}-\left(-12x^{1}\right)}{\left(x^{2}-9\right)^{2}}
Tango 14 mai i 7.
\frac{-7x^{2}-63x^{0}-\left(-12x\right)}{\left(x^{2}-9\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-7x^{2}-63-\left(-12x\right)}{\left(x^{2}-9\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.