Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5x}{x\left(x-5\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{5}{x-5}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\left(x^{2}-5x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1})-5x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-5x^{1})}{\left(x^{2}-5x^{1}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-5x^{1}\right)\times 5x^{1-1}-5x^{1}\left(2x^{2-1}-5x^{1-1}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-5x^{1}\right)\times 5x^{0}-5x^{1}\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
Whakarūnātia.
\frac{x^{2}\times 5x^{0}-5x^{1}\times 5x^{0}-5x^{1}\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
Whakareatia x^{2}-5x^{1} ki te 5x^{0}.
\frac{x^{2}\times 5x^{0}-5x^{1}\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
Whakareatia 5x^{1} ki te 2x^{1}-5x^{0}.
\frac{5x^{2}-5\times 5x^{1}-\left(5\times 2x^{1+1}+5\left(-5\right)x^{1}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{5x^{2}-25x^{1}-\left(10x^{2}-25x^{1}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
Whakarūnātia.
\frac{-5x^{2}}{\left(x^{2}-5x^{1}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-5x^{2}}{\left(x^{2}-5x\right)^{2}}
Mō tētahi kupu t, t^{1}=t.