Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3}
Tauwehea te x^{2}-4x-21.
\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-7\right)\left(x+3\right) me x-7 ko \left(x-7\right)\left(x+3\right). Whakareatia \frac{3}{x-7} ki te \frac{x+3}{x+3}.
\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Tā te mea he rite te tauraro o \frac{5x}{\left(x-7\right)\left(x+3\right)} me \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Mahia ngā whakarea i roto o 5x-3\left(x+3\right).
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
Whakakotahitia ngā kupu rite i 5x-3x-9.
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-7\right)\left(x+3\right) me x+3 ko \left(x-7\right)\left(x+3\right). Whakareatia \frac{4}{x+3} ki te \frac{x-7}{x-7}.
\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{2x-9}{\left(x-7\right)\left(x+3\right)} me \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)}
Mahia ngā whakarea i roto o 2x-9+4\left(x-7\right).
\frac{6x-37}{\left(x-7\right)\left(x+3\right)}
Whakakotahitia ngā kupu rite i 2x-9+4x-28.
\frac{6x-37}{x^{2}-4x-21}
Whakarohaina te \left(x-7\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3})
Tauwehea te x^{2}-4x-21.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-7\right)\left(x+3\right) me x-7 ko \left(x-7\right)\left(x+3\right). Whakareatia \frac{3}{x-7} ki te \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Tā te mea he rite te tauraro o \frac{5x}{\left(x-7\right)\left(x+3\right)} me \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Mahia ngā whakarea i roto o 5x-3\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
Whakakotahitia ngā kupu rite i 5x-3x-9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x-7\right)\left(x+3\right) me x+3 ko \left(x-7\right)\left(x+3\right). Whakareatia \frac{4}{x+3} ki te \frac{x-7}{x-7}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
Tā te mea he rite te tauraro o \frac{2x-9}{\left(x-7\right)\left(x+3\right)} me \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)})
Mahia ngā whakarea i roto o 2x-9+4\left(x-7\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{\left(x-7\right)\left(x+3\right)})
Whakakotahitia ngā kupu rite i 2x-9+4x-28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{x^{2}-4x-21})
Whakamahia te āhuatanga tuaritanga hei whakarea te x-7 ki te x+3 ka whakakotahi i ngā kupu rite.
\frac{\left(x^{2}-4x^{1}-21\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-37)-\left(6x^{1}-37\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-21)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{1-1}-\left(6x^{1}-37\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Whakarūnātia.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Whakareatia x^{2}-4x^{1}-21 ki te 6x^{0}.
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}\times 2x^{1}+6x^{1}\left(-4\right)x^{0}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Whakareatia 6x^{1}-37 ki te 2x^{1}-4x^{0}.
\frac{6x^{2}-4\times 6x^{1}-21\times 6x^{0}-\left(6\times 2x^{1+1}+6\left(-4\right)x^{1}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{6x^{2}-24x^{1}-126x^{0}-\left(12x^{2}-24x^{1}-74x^{1}+148x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
Whakarūnātia.
\frac{-6x^{2}+74x^{1}-274x^{0}}{\left(x^{2}-4x^{1}-21\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-6x^{2}+74x-274x^{0}}{\left(x^{2}-4x-21\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-6x^{2}+74x-274}{\left(x^{2}-4x-21\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.