Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5^{1}x^{5}y^{4}}{35^{1}x^{1}y^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{5^{1}}{35^{1}}x^{5-1}y^{4-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{5^{1}}{35^{1}}x^{4}y^{4-2}
Tango 1 mai i 5.
\frac{5^{1}}{35^{1}}x^{4}y^{2}
Tango 2 mai i 4.
\frac{1}{7}x^{4}y^{2}
Whakahekea te hautanga \frac{5}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5y^{4}}{35y^{2}}x^{5-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{2}}{7}x^{4})
Mahia ngā tātaitanga.
4\times \frac{y^{2}}{7}x^{4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{4y^{2}}{7}x^{3}
Mahia ngā tātaitanga.