Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(5x^{0}\right)^{1}\times \frac{1}{20x^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
5^{1}\left(x^{0}\right)^{1}\times \frac{1}{20}\times \frac{1}{x^{4}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
5^{1}\times \frac{1}{20}\left(x^{0}\right)^{1}\times \frac{1}{x^{4}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
5^{1}\times \frac{1}{20}x^{0}x^{4\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
5^{1}\times \frac{1}{20}x^{0}x^{-4}
Whakareatia 4 ki te -1.
5^{1}\times \frac{1}{20}x^{-4}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
5\times \frac{1}{20}x^{-4}
Hīkina te 5 ki te pū 1.
\frac{1}{4}x^{-4}
Whakareatia 5 ki te \frac{1}{20}.
\frac{5^{1}x^{0}}{20^{1}x^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{5^{1}x^{-4}}{20^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{1}{4}x^{-4}
Whakahekea te hautanga \frac{5}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{0}}{4x^{4}})
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4x^{4}})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
-\left(4x^{4}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{4})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(4x^{4}\right)^{-2}\times 4\times 4x^{4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-16x^{3}\times \left(4x^{4}\right)^{-2}
Whakarūnātia.