Aromātai
\frac{1}{4x^{4}}
Kimi Pārōnaki e ai ki x
-\frac{1}{x^{5}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(5x^{0}\right)^{1}\times \frac{1}{20x^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
5^{1}\left(x^{0}\right)^{1}\times \frac{1}{20}\times \frac{1}{x^{4}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
5^{1}\times \frac{1}{20}\left(x^{0}\right)^{1}\times \frac{1}{x^{4}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
5^{1}\times \frac{1}{20}x^{0}x^{4\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
5^{1}\times \frac{1}{20}x^{0}x^{-4}
Whakareatia 4 ki te -1.
5^{1}\times \frac{1}{20}x^{-4}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
5\times \frac{1}{20}x^{-4}
Hīkina te 5 ki te pū 1.
\frac{1}{4}x^{-4}
Whakareatia 5 ki te \frac{1}{20}.
\frac{5^{1}x^{0}}{20^{1}x^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{5^{1}x^{-4}}{20^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{1}{4}x^{-4}
Whakahekea te hautanga \frac{5}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{0}}{4x^{4}})
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4x^{4}})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
-\left(4x^{4}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{4})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(4x^{4}\right)^{-2}\times 4\times 4x^{4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-16x^{3}\times \left(4x^{4}\right)^{-2}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}