Whakaoti mō x (complex solution)
x=\frac{-6\sqrt{6}i+15}{49}\approx 0.306122449-0.29993752i
x=\frac{15+6\sqrt{6}i}{49}\approx 0.306122449+0.29993752i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x-1\right)\left(5x+9\right)-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara \frac{1}{8},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3x-1\right)\left(8x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 8x-1,3x-1.
15x^{2}+22x-9-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te 5x+9 ka whakakotahi i ngā kupu rite.
15x^{2}+22x-9-\left(40x^{2}+3x-1\right)=\left(3x-1\right)\left(8x-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x-1 ki te 5x+1 ka whakakotahi i ngā kupu rite.
15x^{2}+22x-9-40x^{2}-3x+1=\left(3x-1\right)\left(8x-1\right)
Hei kimi i te tauaro o 40x^{2}+3x-1, kimihia te tauaro o ia taurangi.
-25x^{2}+22x-9-3x+1=\left(3x-1\right)\left(8x-1\right)
Pahekotia te 15x^{2} me -40x^{2}, ka -25x^{2}.
-25x^{2}+19x-9+1=\left(3x-1\right)\left(8x-1\right)
Pahekotia te 22x me -3x, ka 19x.
-25x^{2}+19x-8=\left(3x-1\right)\left(8x-1\right)
Tāpirihia te -9 ki te 1, ka -8.
-25x^{2}+19x-8=24x^{2}-11x+1
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te 8x-1 ka whakakotahi i ngā kupu rite.
-25x^{2}+19x-8-24x^{2}=-11x+1
Tangohia te 24x^{2} mai i ngā taha e rua.
-49x^{2}+19x-8=-11x+1
Pahekotia te -25x^{2} me -24x^{2}, ka -49x^{2}.
-49x^{2}+19x-8+11x=1
Me tāpiri te 11x ki ngā taha e rua.
-49x^{2}+30x-8=1
Pahekotia te 19x me 11x, ka 30x.
-49x^{2}+30x-8-1=0
Tangohia te 1 mai i ngā taha e rua.
-49x^{2}+30x-9=0
Tangohia te 1 i te -8, ka -9.
x=\frac{-30±\sqrt{30^{2}-4\left(-49\right)\left(-9\right)}}{2\left(-49\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -49 mō a, 30 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-49\right)\left(-9\right)}}{2\left(-49\right)}
Pūrua 30.
x=\frac{-30±\sqrt{900+196\left(-9\right)}}{2\left(-49\right)}
Whakareatia -4 ki te -49.
x=\frac{-30±\sqrt{900-1764}}{2\left(-49\right)}
Whakareatia 196 ki te -9.
x=\frac{-30±\sqrt{-864}}{2\left(-49\right)}
Tāpiri 900 ki te -1764.
x=\frac{-30±12\sqrt{6}i}{2\left(-49\right)}
Tuhia te pūtakerua o te -864.
x=\frac{-30±12\sqrt{6}i}{-98}
Whakareatia 2 ki te -49.
x=\frac{-30+12\sqrt{6}i}{-98}
Nā, me whakaoti te whārite x=\frac{-30±12\sqrt{6}i}{-98} ina he tāpiri te ±. Tāpiri -30 ki te 12i\sqrt{6}.
x=\frac{-6\sqrt{6}i+15}{49}
Whakawehe -30+12i\sqrt{6} ki te -98.
x=\frac{-12\sqrt{6}i-30}{-98}
Nā, me whakaoti te whārite x=\frac{-30±12\sqrt{6}i}{-98} ina he tango te ±. Tango 12i\sqrt{6} mai i -30.
x=\frac{15+6\sqrt{6}i}{49}
Whakawehe -30-12i\sqrt{6} ki te -98.
x=\frac{-6\sqrt{6}i+15}{49} x=\frac{15+6\sqrt{6}i}{49}
Kua oti te whārite te whakatau.
\left(3x-1\right)\left(5x+9\right)-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara \frac{1}{8},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(3x-1\right)\left(8x-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 8x-1,3x-1.
15x^{2}+22x-9-\left(8x-1\right)\left(5x+1\right)=\left(3x-1\right)\left(8x-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te 5x+9 ka whakakotahi i ngā kupu rite.
15x^{2}+22x-9-\left(40x^{2}+3x-1\right)=\left(3x-1\right)\left(8x-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x-1 ki te 5x+1 ka whakakotahi i ngā kupu rite.
15x^{2}+22x-9-40x^{2}-3x+1=\left(3x-1\right)\left(8x-1\right)
Hei kimi i te tauaro o 40x^{2}+3x-1, kimihia te tauaro o ia taurangi.
-25x^{2}+22x-9-3x+1=\left(3x-1\right)\left(8x-1\right)
Pahekotia te 15x^{2} me -40x^{2}, ka -25x^{2}.
-25x^{2}+19x-9+1=\left(3x-1\right)\left(8x-1\right)
Pahekotia te 22x me -3x, ka 19x.
-25x^{2}+19x-8=\left(3x-1\right)\left(8x-1\right)
Tāpirihia te -9 ki te 1, ka -8.
-25x^{2}+19x-8=24x^{2}-11x+1
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te 8x-1 ka whakakotahi i ngā kupu rite.
-25x^{2}+19x-8-24x^{2}=-11x+1
Tangohia te 24x^{2} mai i ngā taha e rua.
-49x^{2}+19x-8=-11x+1
Pahekotia te -25x^{2} me -24x^{2}, ka -49x^{2}.
-49x^{2}+19x-8+11x=1
Me tāpiri te 11x ki ngā taha e rua.
-49x^{2}+30x-8=1
Pahekotia te 19x me 11x, ka 30x.
-49x^{2}+30x=1+8
Me tāpiri te 8 ki ngā taha e rua.
-49x^{2}+30x=9
Tāpirihia te 1 ki te 8, ka 9.
\frac{-49x^{2}+30x}{-49}=\frac{9}{-49}
Whakawehea ngā taha e rua ki te -49.
x^{2}+\frac{30}{-49}x=\frac{9}{-49}
Mā te whakawehe ki te -49 ka wetekia te whakareanga ki te -49.
x^{2}-\frac{30}{49}x=\frac{9}{-49}
Whakawehe 30 ki te -49.
x^{2}-\frac{30}{49}x=-\frac{9}{49}
Whakawehe 9 ki te -49.
x^{2}-\frac{30}{49}x+\left(-\frac{15}{49}\right)^{2}=-\frac{9}{49}+\left(-\frac{15}{49}\right)^{2}
Whakawehea te -\frac{30}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{49}. Nā, tāpiria te pūrua o te -\frac{15}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{30}{49}x+\frac{225}{2401}=-\frac{9}{49}+\frac{225}{2401}
Pūruatia -\frac{15}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{30}{49}x+\frac{225}{2401}=-\frac{216}{2401}
Tāpiri -\frac{9}{49} ki te \frac{225}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{15}{49}\right)^{2}=-\frac{216}{2401}
Tauwehea x^{2}-\frac{30}{49}x+\frac{225}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{49}\right)^{2}}=\sqrt{-\frac{216}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{49}=\frac{6\sqrt{6}i}{49} x-\frac{15}{49}=-\frac{6\sqrt{6}i}{49}
Whakarūnātia.
x=\frac{15+6\sqrt{6}i}{49} x=\frac{-6\sqrt{6}i+15}{49}
Me tāpiri \frac{15}{49} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}