Whakaoti mō t
t=\frac{8}{25}=0.32
Tohaina
Kua tāruatia ki te papatopenga
5\times 5t^{2}=8t
Tē taea kia ōrite te tāupe t ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10t, arā, te tauraro pātahi he tino iti rawa te kitea o 2t,5.
25t^{2}=8t
Whakareatia te 5 ki te 5, ka 25.
25t^{2}-8t=0
Tangohia te 8t mai i ngā taha e rua.
t\left(25t-8\right)=0
Tauwehea te t.
t=0 t=\frac{8}{25}
Hei kimi otinga whārite, me whakaoti te t=0 me te 25t-8=0.
t=\frac{8}{25}
Tē taea kia ōrite te tāupe t ki 0.
5\times 5t^{2}=8t
Tē taea kia ōrite te tāupe t ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10t, arā, te tauraro pātahi he tino iti rawa te kitea o 2t,5.
25t^{2}=8t
Whakareatia te 5 ki te 5, ka 25.
25t^{2}-8t=0
Tangohia te 8t mai i ngā taha e rua.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, -8 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-8\right)±8}{2\times 25}
Tuhia te pūtakerua o te \left(-8\right)^{2}.
t=\frac{8±8}{2\times 25}
Ko te tauaro o -8 ko 8.
t=\frac{8±8}{50}
Whakareatia 2 ki te 25.
t=\frac{16}{50}
Nā, me whakaoti te whārite t=\frac{8±8}{50} ina he tāpiri te ±. Tāpiri 8 ki te 8.
t=\frac{8}{25}
Whakahekea te hautanga \frac{16}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t=\frac{0}{50}
Nā, me whakaoti te whārite t=\frac{8±8}{50} ina he tango te ±. Tango 8 mai i 8.
t=0
Whakawehe 0 ki te 50.
t=\frac{8}{25} t=0
Kua oti te whārite te whakatau.
t=\frac{8}{25}
Tē taea kia ōrite te tāupe t ki 0.
5\times 5t^{2}=8t
Tē taea kia ōrite te tāupe t ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10t, arā, te tauraro pātahi he tino iti rawa te kitea o 2t,5.
25t^{2}=8t
Whakareatia te 5 ki te 5, ka 25.
25t^{2}-8t=0
Tangohia te 8t mai i ngā taha e rua.
\frac{25t^{2}-8t}{25}=\frac{0}{25}
Whakawehea ngā taha e rua ki te 25.
t^{2}-\frac{8}{25}t=\frac{0}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
t^{2}-\frac{8}{25}t=0
Whakawehe 0 ki te 25.
t^{2}-\frac{8}{25}t+\left(-\frac{4}{25}\right)^{2}=\left(-\frac{4}{25}\right)^{2}
Whakawehea te -\frac{8}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{25}. Nā, tāpiria te pūrua o te -\frac{4}{25} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{8}{25}t+\frac{16}{625}=\frac{16}{625}
Pūruatia -\frac{4}{25} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(t-\frac{4}{25}\right)^{2}=\frac{16}{625}
Tauwehea t^{2}-\frac{8}{25}t+\frac{16}{625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{4}{25}\right)^{2}}=\sqrt{\frac{16}{625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{4}{25}=\frac{4}{25} t-\frac{4}{25}=-\frac{4}{25}
Whakarūnātia.
t=\frac{8}{25} t=0
Me tāpiri \frac{4}{25} ki ngā taha e rua o te whārite.
t=\frac{8}{25}
Tē taea kia ōrite te tāupe t ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}