Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5^{1}p^{3}q^{2}}{25^{1}p^{1}q^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{5^{1}}{25^{1}}p^{3-1}q^{2-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{5^{1}}{25^{1}}p^{2}q^{2-1}
Tango 1 mai i 3.
\frac{5^{1}}{25^{1}}p^{2}q^{1}
Tango 1 mai i 2.
\frac{1}{5}p^{2}q
Whakahekea te hautanga \frac{5}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{5q^{2}}{25q}p^{3-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{q}{5}p^{2})
Mahia ngā tātaitanga.
2\times \frac{q}{5}p^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{2q}{5}p^{1}
Mahia ngā tātaitanga.
\frac{2q}{5}p
Mō tētahi kupu t, t^{1}=t.