Whakaoti mō p
p=-\frac{4}{5}=-0.8
p=1
Tohaina
Kua tāruatia ki te papatopenga
5p^{2}+3p=4\left(p+1\right)
Tē taea kia ōrite te tāupe p ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p+1.
5p^{2}+3p=4p+4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te p+1.
5p^{2}+3p-4p=4
Tangohia te 4p mai i ngā taha e rua.
5p^{2}-p=4
Pahekotia te 3p me -4p, ka -p.
5p^{2}-p-4=0
Tangohia te 4 mai i ngā taha e rua.
a+b=-1 ab=5\left(-4\right)=-20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5p^{2}+ap+bp-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-20 2,-10 4,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
1-20=-19 2-10=-8 4-5=-1
Tātaihia te tapeke mō ia takirua.
a=-5 b=4
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(5p^{2}-5p\right)+\left(4p-4\right)
Tuhia anō te 5p^{2}-p-4 hei \left(5p^{2}-5p\right)+\left(4p-4\right).
5p\left(p-1\right)+4\left(p-1\right)
Tauwehea te 5p i te tuatahi me te 4 i te rōpū tuarua.
\left(p-1\right)\left(5p+4\right)
Whakatauwehea atu te kīanga pātahi p-1 mā te whakamahi i te āhuatanga tātai tohatoha.
p=1 p=-\frac{4}{5}
Hei kimi otinga whārite, me whakaoti te p-1=0 me te 5p+4=0.
5p^{2}+3p=4\left(p+1\right)
Tē taea kia ōrite te tāupe p ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p+1.
5p^{2}+3p=4p+4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te p+1.
5p^{2}+3p-4p=4
Tangohia te 4p mai i ngā taha e rua.
5p^{2}-p=4
Pahekotia te 3p me -4p, ka -p.
5p^{2}-p-4=0
Tangohia te 4 mai i ngā taha e rua.
p=\frac{-\left(-1\right)±\sqrt{1-4\times 5\left(-4\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, -1 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-1\right)±\sqrt{1-20\left(-4\right)}}{2\times 5}
Whakareatia -4 ki te 5.
p=\frac{-\left(-1\right)±\sqrt{1+80}}{2\times 5}
Whakareatia -20 ki te -4.
p=\frac{-\left(-1\right)±\sqrt{81}}{2\times 5}
Tāpiri 1 ki te 80.
p=\frac{-\left(-1\right)±9}{2\times 5}
Tuhia te pūtakerua o te 81.
p=\frac{1±9}{2\times 5}
Ko te tauaro o -1 ko 1.
p=\frac{1±9}{10}
Whakareatia 2 ki te 5.
p=\frac{10}{10}
Nā, me whakaoti te whārite p=\frac{1±9}{10} ina he tāpiri te ±. Tāpiri 1 ki te 9.
p=1
Whakawehe 10 ki te 10.
p=-\frac{8}{10}
Nā, me whakaoti te whārite p=\frac{1±9}{10} ina he tango te ±. Tango 9 mai i 1.
p=-\frac{4}{5}
Whakahekea te hautanga \frac{-8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
p=1 p=-\frac{4}{5}
Kua oti te whārite te whakatau.
5p^{2}+3p=4\left(p+1\right)
Tē taea kia ōrite te tāupe p ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p+1.
5p^{2}+3p=4p+4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te p+1.
5p^{2}+3p-4p=4
Tangohia te 4p mai i ngā taha e rua.
5p^{2}-p=4
Pahekotia te 3p me -4p, ka -p.
\frac{5p^{2}-p}{5}=\frac{4}{5}
Whakawehea ngā taha e rua ki te 5.
p^{2}-\frac{1}{5}p=\frac{4}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
p^{2}-\frac{1}{5}p+\left(-\frac{1}{10}\right)^{2}=\frac{4}{5}+\left(-\frac{1}{10}\right)^{2}
Whakawehea te -\frac{1}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{10}. Nā, tāpiria te pūrua o te -\frac{1}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-\frac{1}{5}p+\frac{1}{100}=\frac{4}{5}+\frac{1}{100}
Pūruatia -\frac{1}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-\frac{1}{5}p+\frac{1}{100}=\frac{81}{100}
Tāpiri \frac{4}{5} ki te \frac{1}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(p-\frac{1}{10}\right)^{2}=\frac{81}{100}
Tauwehea p^{2}-\frac{1}{5}p+\frac{1}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{1}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{1}{10}=\frac{9}{10} p-\frac{1}{10}=-\frac{9}{10}
Whakarūnātia.
p=1 p=-\frac{4}{5}
Me tāpiri \frac{1}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}