Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(5a-1\right)}{12}-\frac{3\left(3a-1\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 4 ko 12. Whakareatia \frac{5a-1}{6} ki te \frac{2}{2}. Whakareatia \frac{3a-1}{4} ki te \frac{3}{3}.
\frac{2\left(5a-1\right)-3\left(3a-1\right)}{12}
Tā te mea he rite te tauraro o \frac{2\left(5a-1\right)}{12} me \frac{3\left(3a-1\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{10a-2-9a+3}{12}
Mahia ngā whakarea i roto o 2\left(5a-1\right)-3\left(3a-1\right).
\frac{a+1}{12}
Whakakotahitia ngā kupu rite i 10a-2-9a+3.
\frac{2\left(5a-1\right)}{12}-\frac{3\left(3a-1\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 4 ko 12. Whakareatia \frac{5a-1}{6} ki te \frac{2}{2}. Whakareatia \frac{3a-1}{4} ki te \frac{3}{3}.
\frac{2\left(5a-1\right)-3\left(3a-1\right)}{12}
Tā te mea he rite te tauraro o \frac{2\left(5a-1\right)}{12} me \frac{3\left(3a-1\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{10a-2-9a+3}{12}
Mahia ngā whakarea i roto o 2\left(5a-1\right)-3\left(3a-1\right).
\frac{a+1}{12}
Whakakotahitia ngā kupu rite i 10a-2-9a+3.