Aromātai
\frac{a+1}{12}
Whakaroha
\frac{a+1}{12}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(5a-1\right)}{12}-\frac{3\left(3a-1\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 4 ko 12. Whakareatia \frac{5a-1}{6} ki te \frac{2}{2}. Whakareatia \frac{3a-1}{4} ki te \frac{3}{3}.
\frac{2\left(5a-1\right)-3\left(3a-1\right)}{12}
Tā te mea he rite te tauraro o \frac{2\left(5a-1\right)}{12} me \frac{3\left(3a-1\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{10a-2-9a+3}{12}
Mahia ngā whakarea i roto o 2\left(5a-1\right)-3\left(3a-1\right).
\frac{a+1}{12}
Whakakotahitia ngā kupu rite i 10a-2-9a+3.
\frac{2\left(5a-1\right)}{12}-\frac{3\left(3a-1\right)}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 4 ko 12. Whakareatia \frac{5a-1}{6} ki te \frac{2}{2}. Whakareatia \frac{3a-1}{4} ki te \frac{3}{3}.
\frac{2\left(5a-1\right)-3\left(3a-1\right)}{12}
Tā te mea he rite te tauraro o \frac{2\left(5a-1\right)}{12} me \frac{3\left(3a-1\right)}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{10a-2-9a+3}{12}
Mahia ngā whakarea i roto o 2\left(5a-1\right)-3\left(3a-1\right).
\frac{a+1}{12}
Whakakotahitia ngā kupu rite i 10a-2-9a+3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}