Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+ba\right)}
Me whakarea te \frac{a+b}{a+3} ki te \frac{35}{a^{2}+ba} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}
Tauwehea te \left(a+3\right)\left(a^{2}+ba\right).
\frac{5aa\left(a+b\right)}{a\left(a+3\right)\left(a+b\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+3 me a\left(a+3\right)\left(a+b\right) ko a\left(a+3\right)\left(a+b\right). Whakareatia \frac{5a}{a+3} ki te \frac{a\left(a+b\right)}{a\left(a+b\right)}.
\frac{5aa\left(a+b\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}
Tā te mea he rite te tauraro o \frac{5aa\left(a+b\right)}{a\left(a+3\right)\left(a+b\right)} me \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5a^{3}+5a^{2}b+35a+35b}{a\left(a+3\right)\left(a+b\right)}
Mahia ngā whakarea i roto o 5aa\left(a+b\right)+\left(a+b\right)\times 35.
\frac{5\left(a+b\right)\left(a^{2}+7\right)}{a\left(a+3\right)\left(a+b\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{5a^{3}+5a^{2}b+35a+35b}{a\left(a+3\right)\left(a+b\right)}.
\frac{5\left(a^{2}+7\right)}{a\left(a+3\right)}
Me whakakore tahi te a+b i te taurunga me te tauraro.
\frac{5\left(a^{2}+7\right)}{a^{2}+3a}
Whakarohaina te a\left(a+3\right).
\frac{5a^{2}+35}{a^{2}+3a}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te a^{2}+7.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+ba\right)}
Me whakarea te \frac{a+b}{a+3} ki te \frac{35}{a^{2}+ba} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}
Tauwehea te \left(a+3\right)\left(a^{2}+ba\right).
\frac{5aa\left(a+b\right)}{a\left(a+3\right)\left(a+b\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+3 me a\left(a+3\right)\left(a+b\right) ko a\left(a+3\right)\left(a+b\right). Whakareatia \frac{5a}{a+3} ki te \frac{a\left(a+b\right)}{a\left(a+b\right)}.
\frac{5aa\left(a+b\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}
Tā te mea he rite te tauraro o \frac{5aa\left(a+b\right)}{a\left(a+3\right)\left(a+b\right)} me \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5a^{3}+5a^{2}b+35a+35b}{a\left(a+3\right)\left(a+b\right)}
Mahia ngā whakarea i roto o 5aa\left(a+b\right)+\left(a+b\right)\times 35.
\frac{5\left(a+b\right)\left(a^{2}+7\right)}{a\left(a+3\right)\left(a+b\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{5a^{3}+5a^{2}b+35a+35b}{a\left(a+3\right)\left(a+b\right)}.
\frac{5\left(a^{2}+7\right)}{a\left(a+3\right)}
Me whakakore tahi te a+b i te taurunga me te tauraro.
\frac{5\left(a^{2}+7\right)}{a^{2}+3a}
Whakarohaina te a\left(a+3\right).
\frac{5a^{2}+35}{a^{2}+3a}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te a^{2}+7.