Aromātai
\frac{a}{30}
Kimi Pārōnaki e ai ki a
\frac{1}{30} = 0.03333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\times 5a}{30}-\frac{6\times 4a}{30}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 5 ko 30. Whakareatia \frac{5a}{6} ki te \frac{5}{5}. Whakareatia \frac{4a}{5} ki te \frac{6}{6}.
\frac{5\times 5a-6\times 4a}{30}
Tā te mea he rite te tauraro o \frac{5\times 5a}{30} me \frac{6\times 4a}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{25a-24a}{30}
Mahia ngā whakarea i roto o 5\times 5a-6\times 4a.
\frac{a}{30}
Whakakotahitia ngā kupu rite i 25a-24a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{5\times 5a}{30}-\frac{6\times 4a}{30})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 5 ko 30. Whakareatia \frac{5a}{6} ki te \frac{5}{5}. Whakareatia \frac{4a}{5} ki te \frac{6}{6}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{5\times 5a-6\times 4a}{30})
Tā te mea he rite te tauraro o \frac{5\times 5a}{30} me \frac{6\times 4a}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{25a-24a}{30})
Mahia ngā whakarea i roto o 5\times 5a-6\times 4a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{30})
Whakakotahitia ngā kupu rite i 25a-24a.
\frac{1}{30}a^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{30}a^{0}
Tango 1 mai i 1.
\frac{1}{30}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{30}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}