Aromātai
\frac{5v-2}{v-7}
Whakaroha
-\frac{2-5v}{v-7}
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 5 - v } { v - 7 } - \frac { 6 v - 7 } { 7 - v }
Tohaina
Kua tāruatia ki te papatopenga
\frac{5-v}{v-7}-\frac{-\left(6v-7\right)}{v-7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o v-7 me 7-v ko v-7. Whakareatia \frac{6v-7}{7-v} ki te \frac{-1}{-1}.
\frac{5-v-\left(-\left(6v-7\right)\right)}{v-7}
Tā te mea he rite te tauraro o \frac{5-v}{v-7} me \frac{-\left(6v-7\right)}{v-7}, me tango rāua mā te tango i ō raua taurunga.
\frac{5-v+6v-7}{v-7}
Mahia ngā whakarea i roto o 5-v-\left(-\left(6v-7\right)\right).
\frac{-2+5v}{v-7}
Whakakotahitia ngā kupu rite i 5-v+6v-7.
\frac{5-v}{v-7}-\frac{-\left(6v-7\right)}{v-7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o v-7 me 7-v ko v-7. Whakareatia \frac{6v-7}{7-v} ki te \frac{-1}{-1}.
\frac{5-v-\left(-\left(6v-7\right)\right)}{v-7}
Tā te mea he rite te tauraro o \frac{5-v}{v-7} me \frac{-\left(6v-7\right)}{v-7}, me tango rāua mā te tango i ō raua taurunga.
\frac{5-v+6v-7}{v-7}
Mahia ngā whakarea i roto o 5-v-\left(-\left(6v-7\right)\right).
\frac{-2+5v}{v-7}
Whakakotahitia ngā kupu rite i 5-v+6v-7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}