Aromātai
-\frac{11}{15}-\frac{6}{5}i\approx -0.733333333-1.2i
Wāhi Tūturu
-\frac{11}{15} = -0.7333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(5-8i\right)\left(3-6i\right)}{\left(3+6i\right)\left(3-6i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 3-6i.
\frac{\left(5-8i\right)\left(3-6i\right)}{3^{2}-6^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-8i\right)\left(3-6i\right)}{45}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)i^{2}}{45}
Me whakarea ngā tau matatini 5-8i me 3-6i pēnā i te whakarea huarua.
\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right)}{45}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{15-30i-24i-48}{45}
Mahia ngā whakarea i roto o 5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right).
\frac{15-48+\left(-30-24\right)i}{45}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 15-30i-24i-48.
\frac{-33-54i}{45}
Mahia ngā tāpiri i roto o 15-48+\left(-30-24\right)i.
-\frac{11}{15}-\frac{6}{5}i
Whakawehea te -33-54i ki te 45, kia riro ko -\frac{11}{15}-\frac{6}{5}i.
Re(\frac{\left(5-8i\right)\left(3-6i\right)}{\left(3+6i\right)\left(3-6i\right)})
Me whakarea te taurunga me te tauraro o \frac{5-8i}{3+6i} ki te haumi hiato o te tauraro, 3-6i.
Re(\frac{\left(5-8i\right)\left(3-6i\right)}{3^{2}-6^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-8i\right)\left(3-6i\right)}{45})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)i^{2}}{45})
Me whakarea ngā tau matatini 5-8i me 3-6i pēnā i te whakarea huarua.
Re(\frac{5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right)}{45})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{15-30i-24i-48}{45})
Mahia ngā whakarea i roto o 5\times 3+5\times \left(-6i\right)-8i\times 3-8\left(-6\right)\left(-1\right).
Re(\frac{15-48+\left(-30-24\right)i}{45})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 15-30i-24i-48.
Re(\frac{-33-54i}{45})
Mahia ngā tāpiri i roto o 15-48+\left(-30-24\right)i.
Re(-\frac{11}{15}-\frac{6}{5}i)
Whakawehea te -33-54i ki te 45, kia riro ko -\frac{11}{15}-\frac{6}{5}i.
-\frac{11}{15}
Ko te wāhi tūturu o -\frac{11}{15}-\frac{6}{5}i ko -\frac{11}{15}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}