Aromātai
\frac{15}{61}-\frac{43}{61}i\approx 0.245901639-0.704918033i
Wāhi Tūturu
\frac{15}{61} = 0.2459016393442623
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(5-3i\right)\left(6-5i\right)}{\left(6+5i\right)\left(6-5i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 6-5i.
\frac{\left(5-3i\right)\left(6-5i\right)}{6^{2}-5^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-3i\right)\left(6-5i\right)}{61}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)i^{2}}{61}
Me whakarea ngā tau matatini 5-3i me 6-5i pēnā i te whakarea huarua.
\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right)}{61}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{30-25i-18i-15}{61}
Mahia ngā whakarea i roto o 5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right).
\frac{30-15+\left(-25-18\right)i}{61}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 30-25i-18i-15.
\frac{15-43i}{61}
Mahia ngā tāpiri i roto o 30-15+\left(-25-18\right)i.
\frac{15}{61}-\frac{43}{61}i
Whakawehea te 15-43i ki te 61, kia riro ko \frac{15}{61}-\frac{43}{61}i.
Re(\frac{\left(5-3i\right)\left(6-5i\right)}{\left(6+5i\right)\left(6-5i\right)})
Me whakarea te taurunga me te tauraro o \frac{5-3i}{6+5i} ki te haumi hiato o te tauraro, 6-5i.
Re(\frac{\left(5-3i\right)\left(6-5i\right)}{6^{2}-5^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5-3i\right)\left(6-5i\right)}{61})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)i^{2}}{61})
Me whakarea ngā tau matatini 5-3i me 6-5i pēnā i te whakarea huarua.
Re(\frac{5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right)}{61})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{30-25i-18i-15}{61})
Mahia ngā whakarea i roto o 5\times 6+5\times \left(-5i\right)-3i\times 6-3\left(-5\right)\left(-1\right).
Re(\frac{30-15+\left(-25-18\right)i}{61})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 30-25i-18i-15.
Re(\frac{15-43i}{61})
Mahia ngā tāpiri i roto o 30-15+\left(-25-18\right)i.
Re(\frac{15}{61}-\frac{43}{61}i)
Whakawehea te 15-43i ki te 61, kia riro ko \frac{15}{61}-\frac{43}{61}i.
\frac{15}{61}
Ko te wāhi tūturu o \frac{15}{61}-\frac{43}{61}i ko \frac{15}{61}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}