Whakaoti mō x
x\in \left(-\infty,\frac{29-\sqrt{15529}}{54}\right)\cup \left(\frac{\sqrt{15529}+29}{54},\infty\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(5-2x\right)+48<3\left(3x-5\right)\times \frac{3x}{2}
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,2. I te mea he tōrunga te 12, kāore e huri te ahunga koreōrite.
20-8x+48<3\left(3x-5\right)\times \frac{3x}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 5-2x.
68-8x<3\left(3x-5\right)\times \frac{3x}{2}
Tāpirihia te 20 ki te 48, ka 68.
68-8x<\frac{3\times 3x}{2}\left(3x-5\right)
Tuhia te 3\times \frac{3x}{2} hei hautanga kotahi.
68-8x<3\times \frac{x\times 3^{2}}{2}x-5\times \frac{3\times 3x}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3\times 3x}{2} ki te 3x-5.
68-8x<3\times \frac{x\times 9}{2}x-5\times \frac{3\times 3x}{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
68-8x<\frac{3x\times 9}{2}x-5\times \frac{3\times 3x}{2}
Tuhia te 3\times \frac{x\times 9}{2} hei hautanga kotahi.
68-8x<\frac{3x\times 9x}{2}-5\times \frac{3\times 3x}{2}
Tuhia te \frac{3x\times 9}{2}x hei hautanga kotahi.
68-8x<\frac{3x\times 9x}{2}-5\times \frac{9x}{2}
Whakareatia te 3 ki te 3, ka 9.
68-8x<\frac{3x\times 9x}{2}+\frac{-5\times 9x}{2}
Tuhia te -5\times \frac{9x}{2} hei hautanga kotahi.
68-8x<\frac{3x\times 9x-5\times 9x}{2}
Tā te mea he rite te tauraro o \frac{3x\times 9x}{2} me \frac{-5\times 9x}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
68-8x<\frac{27x^{2}-45x}{2}
Mahia ngā whakarea i roto o 3x\times 9x-5\times 9x.
68-8x<\frac{27}{2}x^{2}-\frac{45}{2}x
Whakawehea ia wā o 27x^{2}-45x ki te 2, kia riro ko \frac{27}{2}x^{2}-\frac{45}{2}x.
68-8x-\frac{27}{2}x^{2}<-\frac{45}{2}x
Tangohia te \frac{27}{2}x^{2} mai i ngā taha e rua.
68-8x-\frac{27}{2}x^{2}+\frac{45}{2}x<0
Me tāpiri te \frac{45}{2}x ki ngā taha e rua.
68+\frac{29}{2}x-\frac{27}{2}x^{2}<0
Pahekotia te -8x me \frac{45}{2}x, ka \frac{29}{2}x.
-68-\frac{29}{2}x+\frac{27}{2}x^{2}>0
Me whakarea te koreōrite ki te -1 kia tōrunga ai te tau whakarea o te pū tino teitei i 68+\frac{29}{2}x-\frac{27}{2}x^{2}. I te mea he tōraro a -1, ka huri te ahunga koreōrite.
-68-\frac{29}{2}x+\frac{27}{2}x^{2}=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\left(-\frac{29}{2}\right)^{2}-4\times \frac{27}{2}\left(-68\right)}}{2\times \frac{27}{2}}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te \frac{27}{2} mō te a, te -\frac{29}{2} mō te b, me te -68 mō te c i te ture pūrua.
x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27}
Mahia ngā tātaitai.
x=\frac{\sqrt{15529}+29}{54} x=\frac{29-\sqrt{15529}}{54}
Whakaotia te whārite x=\frac{\frac{29}{2}±\frac{1}{2}\sqrt{15529}}{27} ina he tōrunga te ±, ina he tōraro te ±.
\frac{27}{2}\left(x-\frac{\sqrt{15529}+29}{54}\right)\left(x-\frac{29-\sqrt{15529}}{54}\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{\sqrt{15529}+29}{54}<0 x-\frac{29-\sqrt{15529}}{54}<0
Kia tōrunga te otinga, me tōraro tahi te x-\frac{\sqrt{15529}+29}{54} me te x-\frac{29-\sqrt{15529}}{54}, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-\frac{\sqrt{15529}+29}{54} me te x-\frac{29-\sqrt{15529}}{54}.
x<\frac{29-\sqrt{15529}}{54}
Te otinga e whakaea i ngā koreōrite e rua ko x<\frac{29-\sqrt{15529}}{54}.
x-\frac{29-\sqrt{15529}}{54}>0 x-\frac{\sqrt{15529}+29}{54}>0
Whakaarohia te tauira ina he tōrunga tahi te x-\frac{\sqrt{15529}+29}{54} me te x-\frac{29-\sqrt{15529}}{54}.
x>\frac{\sqrt{15529}+29}{54}
Te otinga e whakaea i ngā koreōrite e rua ko x>\frac{\sqrt{15529}+29}{54}.
x<\frac{29-\sqrt{15529}}{54}\text{; }x>\frac{\sqrt{15529}+29}{54}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}