Aromātai
\frac{32}{9}\approx 3.555555556
Tauwehe
\frac{2 ^ {5}}{3 ^ {2}} = 3\frac{5}{9} = 3.5555555555555554
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakangāwaritia te tauraro o \frac{5-\sqrt{7}}{5+\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 5-\sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakaarohia te \left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{25-7}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Pūrua 5. Pūrua \sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Tangohia te 7 i te 25, ka 18.
\frac{\left(5-\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakareatia te 5-\sqrt{7} ki te 5-\sqrt{7}, ka \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+7}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{32-10\sqrt{7}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Tāpirihia te 25 ki te 7, ka 32.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{5+\sqrt{7}}{5-\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 5+\sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}
Whakaarohia te \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{25-7}
Pūrua 5. Pūrua \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{18}
Tangohia te 7 i te 25, ka 18.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)^{2}}{18}
Whakareatia te 5+\sqrt{7} ki te 5+\sqrt{7}, ka \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+7}{18}
Ko te pūrua o \sqrt{7} ko 7.
\frac{32-10\sqrt{7}}{18}+\frac{32+10\sqrt{7}}{18}
Tāpirihia te 25 ki te 7, ka 32.
\frac{32-10\sqrt{7}+32+10\sqrt{7}}{18}
Tā te mea he rite te tauraro o \frac{32-10\sqrt{7}}{18} me \frac{32+10\sqrt{7}}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{64}{18}
Mahia ngā tātaitai i roto o 32-10\sqrt{7}+32+10\sqrt{7}.
\frac{32}{9}
Whakahekea te hautanga \frac{64}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}