Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right)}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakangāwaritia te tauraro o \frac{5-\sqrt{7}}{5+\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 5-\sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakaarohia te \left(5+\sqrt{7}\right)\left(5-\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{25-7}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Pūrua 5. Pūrua \sqrt{7}.
\frac{\left(5-\sqrt{7}\right)\left(5-\sqrt{7}\right)}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Tangohia te 7 i te 25, ka 18.
\frac{\left(5-\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakareatia te 5-\sqrt{7} ki te 5-\sqrt{7}, ka \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-\sqrt{7}\right)^{2}.
\frac{25-10\sqrt{7}+7}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{32-10\sqrt{7}}{18}+\frac{5+\sqrt{7}}{5-\sqrt{7}}
Tāpirihia te 25 ki te 7, ka 32.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{\left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{5+\sqrt{7}}{5-\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 5+\sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{5^{2}-\left(\sqrt{7}\right)^{2}}
Whakaarohia te \left(5-\sqrt{7}\right)\left(5+\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{25-7}
Pūrua 5. Pūrua \sqrt{7}.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)\left(5+\sqrt{7}\right)}{18}
Tangohia te 7 i te 25, ka 18.
\frac{32-10\sqrt{7}}{18}+\frac{\left(5+\sqrt{7}\right)^{2}}{18}
Whakareatia te 5+\sqrt{7} ki te 5+\sqrt{7}, ka \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+\left(\sqrt{7}\right)^{2}}{18}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(5+\sqrt{7}\right)^{2}.
\frac{32-10\sqrt{7}}{18}+\frac{25+10\sqrt{7}+7}{18}
Ko te pūrua o \sqrt{7} ko 7.
\frac{32-10\sqrt{7}}{18}+\frac{32+10\sqrt{7}}{18}
Tāpirihia te 25 ki te 7, ka 32.
\frac{32-10\sqrt{7}+32+10\sqrt{7}}{18}
Tā te mea he rite te tauraro o \frac{32-10\sqrt{7}}{18} me \frac{32+10\sqrt{7}}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{64}{18}
Mahia ngā tātaitai i roto o 32-10\sqrt{7}+32+10\sqrt{7}.
\frac{32}{9}
Whakahekea te hautanga \frac{64}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.