Whakaoti mō x
x = \frac{20}{13} = 1\frac{7}{13} \approx 1.538461538
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x+5\right)\left(5\left(x-2\right)+6\right)=3x\times 5x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{5}{3},0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x\left(3x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x,11-3\left(2-x\right).
\left(3x+5\right)\left(5x-10+6\right)=3x\times 5x
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-2.
\left(3x+5\right)\left(5x-4\right)=3x\times 5x
Tāpirihia te -10 ki te 6, ka -4.
15x^{2}+13x-20=3x\times 5x
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+5 ki te 5x-4 ka whakakotahi i ngā kupu rite.
15x^{2}+13x-20=3x^{2}\times 5
Whakareatia te x ki te x, ka x^{2}.
15x^{2}+13x-20=15x^{2}
Whakareatia te 3 ki te 5, ka 15.
15x^{2}+13x-20-15x^{2}=0
Tangohia te 15x^{2} mai i ngā taha e rua.
13x-20=0
Pahekotia te 15x^{2} me -15x^{2}, ka 0.
13x=20
Me tāpiri te 20 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{20}{13}
Whakawehea ngā taha e rua ki te 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}