Aromātai
-8-16i
Wāhi Tūturu
-8
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\left(i+3\right)}{5}\times \frac{\left(2i\right)^{4}}{\left(1+i\right)^{3}}
Whakareatia te 1+2i ki te 1-2i, ka 5.
\left(i+3\right)\times \frac{\left(2i\right)^{4}}{\left(1+i\right)^{3}}
Me whakakore te 5 me te 5.
\left(i+3\right)\times \frac{16}{\left(1+i\right)^{3}}
Tātaihia te 2i mā te pū o 4, kia riro ko 16.
\left(i+3\right)\times \frac{16}{-2+2i}
Tātaihia te 1+i mā te pū o 3, kia riro ko -2+2i.
\left(i+3\right)\times \frac{16\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}
Me whakarea te taurunga me te tauraro o \frac{16}{-2+2i} ki te haumi hiato o te tauraro, -2-2i.
\left(i+3\right)\times \frac{-32-32i}{8}
Mahia ngā whakarea i roto o \frac{16\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
\left(i+3\right)\left(-4-4i\right)
Whakawehea te -32-32i ki te 8, kia riro ko -4-4i.
4-4i+\left(-12-12i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te i+3 ki te -4-4i.
-8-16i
Tāpirihia te 4-4i ki te -12-12i, ka -8-16i.
Re(\frac{5\left(i+3\right)}{5}\times \frac{\left(2i\right)^{4}}{\left(1+i\right)^{3}})
Whakareatia te 1+2i ki te 1-2i, ka 5.
Re(\left(i+3\right)\times \frac{\left(2i\right)^{4}}{\left(1+i\right)^{3}})
Me whakakore te 5 me te 5.
Re(\left(i+3\right)\times \frac{16}{\left(1+i\right)^{3}})
Tātaihia te 2i mā te pū o 4, kia riro ko 16.
Re(\left(i+3\right)\times \frac{16}{-2+2i})
Tātaihia te 1+i mā te pū o 3, kia riro ko -2+2i.
Re(\left(i+3\right)\times \frac{16\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)})
Me whakarea te taurunga me te tauraro o \frac{16}{-2+2i} ki te haumi hiato o te tauraro, -2-2i.
Re(\left(i+3\right)\times \frac{-32-32i}{8})
Mahia ngā whakarea i roto o \frac{16\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
Re(\left(i+3\right)\left(-4-4i\right))
Whakawehea te -32-32i ki te 8, kia riro ko -4-4i.
Re(4-4i+\left(-12-12i\right))
Whakamahia te āhuatanga tohatoha hei whakarea te i+3 ki te -4-4i.
Re(-8-16i)
Tāpirihia te 4-4i ki te -12-12i, ka -8-16i.
-8
Ko te wāhi tūturu o -8-16i ko -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}