Whakaoti mō x
x=-2
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 5 ( 8 - x ) } { 48 } = \frac { 11 - 32 x } { 72 }
Tohaina
Kua tāruatia ki te papatopenga
3\times 5\left(8-x\right)=2\left(11-32x\right)
Me whakarea ngā taha e rua o te whārite ki te 144, arā, te tauraro pātahi he tino iti rawa te kitea o 48,72.
15\left(8-x\right)=2\left(11-32x\right)
Whakareatia te 3 ki te 5, ka 15.
120-15x=2\left(11-32x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te 8-x.
120-15x=22-64x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 11-32x.
120-15x+64x=22
Me tāpiri te 64x ki ngā taha e rua.
120+49x=22
Pahekotia te -15x me 64x, ka 49x.
49x=22-120
Tangohia te 120 mai i ngā taha e rua.
49x=-98
Tangohia te 120 i te 22, ka -98.
x=\frac{-98}{49}
Whakawehea ngā taha e rua ki te 49.
x=-2
Whakawehea te -98 ki te 49, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}