Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}-\frac{6x\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-3 me x+2 ko \left(x-3\right)\left(x+2\right). Whakareatia \frac{5}{x-3} ki te \frac{x+2}{x+2}. Whakareatia \frac{6x}{x+2} ki te \frac{x-3}{x-3}.
\frac{5\left(x+2\right)-6x\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{5\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} me \frac{6x\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{5x+10-6x^{2}+18x}{\left(x-3\right)\left(x+2\right)}
Mahia ngā whakarea i roto o 5\left(x+2\right)-6x\left(x-3\right).
\frac{23x+10-6x^{2}}{\left(x-3\right)\left(x+2\right)}
Whakakotahitia ngā kupu rite i 5x+10-6x^{2}+18x.
\frac{23x+10-6x^{2}}{x^{2}-x-6}
Whakarohaina te \left(x-3\right)\left(x+2\right).