Whakaoti mō x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
x=-10
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 5 } { x } - \frac { 3 } { 2 } = \frac { x } { 5 }
Tohaina
Kua tāruatia ki te papatopenga
10\times 5+10x\left(-\frac{3}{2}\right)=2xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10x, arā, te tauraro pātahi he tino iti rawa te kitea o x,2,5.
50+10x\left(-\frac{3}{2}\right)=2xx
Whakareatia te 10 ki te 5, ka 50.
50+\frac{10\left(-3\right)}{2}x=2xx
Tuhia te 10\left(-\frac{3}{2}\right) hei hautanga kotahi.
50+\frac{-30}{2}x=2xx
Whakareatia te 10 ki te -3, ka -30.
50-15x=2xx
Whakawehea te -30 ki te 2, kia riro ko -15.
50-15x=2x^{2}
Whakareatia te x ki te x, ka x^{2}.
50-15x-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
-2x^{2}-15x+50=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-15 ab=-2\times 50=-100
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx+50. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-100 2,-50 4,-25 5,-20 10,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -100.
1-100=-99 2-50=-48 4-25=-21 5-20=-15 10-10=0
Tātaihia te tapeke mō ia takirua.
a=5 b=-20
Ko te otinga te takirua ka hoatu i te tapeke -15.
\left(-2x^{2}+5x\right)+\left(-20x+50\right)
Tuhia anō te -2x^{2}-15x+50 hei \left(-2x^{2}+5x\right)+\left(-20x+50\right).
-x\left(2x-5\right)-10\left(2x-5\right)
Tauwehea te -x i te tuatahi me te -10 i te rōpū tuarua.
\left(2x-5\right)\left(-x-10\right)
Whakatauwehea atu te kīanga pātahi 2x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{2} x=-10
Hei kimi otinga whārite, me whakaoti te 2x-5=0 me te -x-10=0.
10\times 5+10x\left(-\frac{3}{2}\right)=2xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10x, arā, te tauraro pātahi he tino iti rawa te kitea o x,2,5.
50+10x\left(-\frac{3}{2}\right)=2xx
Whakareatia te 10 ki te 5, ka 50.
50+\frac{10\left(-3\right)}{2}x=2xx
Tuhia te 10\left(-\frac{3}{2}\right) hei hautanga kotahi.
50+\frac{-30}{2}x=2xx
Whakareatia te 10 ki te -3, ka -30.
50-15x=2xx
Whakawehea te -30 ki te 2, kia riro ko -15.
50-15x=2x^{2}
Whakareatia te x ki te x, ka x^{2}.
50-15x-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
-2x^{2}-15x+50=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-2\right)\times 50}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -15 mō b, me 50 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-2\right)\times 50}}{2\left(-2\right)}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225+8\times 50}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-15\right)±\sqrt{225+400}}{2\left(-2\right)}
Whakareatia 8 ki te 50.
x=\frac{-\left(-15\right)±\sqrt{625}}{2\left(-2\right)}
Tāpiri 225 ki te 400.
x=\frac{-\left(-15\right)±25}{2\left(-2\right)}
Tuhia te pūtakerua o te 625.
x=\frac{15±25}{2\left(-2\right)}
Ko te tauaro o -15 ko 15.
x=\frac{15±25}{-4}
Whakareatia 2 ki te -2.
x=\frac{40}{-4}
Nā, me whakaoti te whārite x=\frac{15±25}{-4} ina he tāpiri te ±. Tāpiri 15 ki te 25.
x=-10
Whakawehe 40 ki te -4.
x=-\frac{10}{-4}
Nā, me whakaoti te whārite x=\frac{15±25}{-4} ina he tango te ±. Tango 25 mai i 15.
x=\frac{5}{2}
Whakahekea te hautanga \frac{-10}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-10 x=\frac{5}{2}
Kua oti te whārite te whakatau.
10\times 5+10x\left(-\frac{3}{2}\right)=2xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10x, arā, te tauraro pātahi he tino iti rawa te kitea o x,2,5.
50+10x\left(-\frac{3}{2}\right)=2xx
Whakareatia te 10 ki te 5, ka 50.
50+\frac{10\left(-3\right)}{2}x=2xx
Tuhia te 10\left(-\frac{3}{2}\right) hei hautanga kotahi.
50+\frac{-30}{2}x=2xx
Whakareatia te 10 ki te -3, ka -30.
50-15x=2xx
Whakawehea te -30 ki te 2, kia riro ko -15.
50-15x=2x^{2}
Whakareatia te x ki te x, ka x^{2}.
50-15x-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
-15x-2x^{2}=-50
Tangohia te 50 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x^{2}-15x=-50
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}-15x}{-2}=-\frac{50}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{15}{-2}\right)x=-\frac{50}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+\frac{15}{2}x=-\frac{50}{-2}
Whakawehe -15 ki te -2.
x^{2}+\frac{15}{2}x=25
Whakawehe -50 ki te -2.
x^{2}+\frac{15}{2}x+\left(\frac{15}{4}\right)^{2}=25+\left(\frac{15}{4}\right)^{2}
Whakawehea te \frac{15}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{15}{4}. Nā, tāpiria te pūrua o te \frac{15}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{15}{2}x+\frac{225}{16}=25+\frac{225}{16}
Pūruatia \frac{15}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{15}{2}x+\frac{225}{16}=\frac{625}{16}
Tāpiri 25 ki te \frac{225}{16}.
\left(x+\frac{15}{4}\right)^{2}=\frac{625}{16}
Tauwehea x^{2}+\frac{15}{2}x+\frac{225}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{4}\right)^{2}}=\sqrt{\frac{625}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{15}{4}=\frac{25}{4} x+\frac{15}{4}=-\frac{25}{4}
Whakarūnātia.
x=\frac{5}{2} x=-10
Me tango \frac{15}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}