Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\times 5=-xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x, arā, te tauraro pātahi he tino iti rawa te kitea o x,3.
3\times 5=-x^{2}
Whakareatia te x ki te x, ka x^{2}.
15=-x^{2}
Whakareatia te 3 ki te 5, ka 15.
-x^{2}=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=-15
Whakawehea ngā taha e rua ki te -1.
x=\sqrt{15}i x=-\sqrt{15}i
Kua oti te whārite te whakatau.
3\times 5=-xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x, arā, te tauraro pātahi he tino iti rawa te kitea o x,3.
3\times 5=-x^{2}
Whakareatia te x ki te x, ka x^{2}.
15=-x^{2}
Whakareatia te 3 ki te 5, ka 15.
-x^{2}=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}-15=0
Tangohia te 15 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\left(-15\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{-60}}{2\left(-1\right)}
Whakareatia 4 ki te -15.
x=\frac{0±2\sqrt{15}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -60.
x=\frac{0±2\sqrt{15}i}{-2}
Whakareatia 2 ki te -1.
x=-\sqrt{15}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{15}i}{-2} ina he tāpiri te ±.
x=\sqrt{15}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{15}i}{-2} ina he tango te ±.
x=-\sqrt{15}i x=\sqrt{15}i
Kua oti te whārite te whakatau.