Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5+\left(x+2\right)x=4\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-4,x-2.
5+x^{2}+2x=4\left(x-2\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
5+x^{2}+2x=\left(4x-8\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-2.
5+x^{2}+2x=4x^{2}-16
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-8 ki te x+2 ka whakakotahi i ngā kupu rite.
5+x^{2}+2x-4x^{2}=-16
Tangohia te 4x^{2} mai i ngā taha e rua.
5-3x^{2}+2x=-16
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
5-3x^{2}+2x+16=0
Me tāpiri te 16 ki ngā taha e rua.
21-3x^{2}+2x=0
Tāpirihia te 5 ki te 16, ka 21.
-3x^{2}+2x+21=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-3\times 21=-63
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,63 -3,21 -7,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -63.
-1+63=62 -3+21=18 -7+9=2
Tātaihia te tapeke mō ia takirua.
a=9 b=-7
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(-3x^{2}+9x\right)+\left(-7x+21\right)
Tuhia anō te -3x^{2}+2x+21 hei \left(-3x^{2}+9x\right)+\left(-7x+21\right).
3x\left(-x+3\right)+7\left(-x+3\right)
Tauwehea te 3x i te tuatahi me te 7 i te rōpū tuarua.
\left(-x+3\right)\left(3x+7\right)
Whakatauwehea atu te kīanga pātahi -x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-\frac{7}{3}
Hei kimi otinga whārite, me whakaoti te -x+3=0 me te 3x+7=0.
5+\left(x+2\right)x=4\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-4,x-2.
5+x^{2}+2x=4\left(x-2\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
5+x^{2}+2x=\left(4x-8\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-2.
5+x^{2}+2x=4x^{2}-16
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-8 ki te x+2 ka whakakotahi i ngā kupu rite.
5+x^{2}+2x-4x^{2}=-16
Tangohia te 4x^{2} mai i ngā taha e rua.
5-3x^{2}+2x=-16
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
5-3x^{2}+2x+16=0
Me tāpiri te 16 ki ngā taha e rua.
21-3x^{2}+2x=0
Tāpirihia te 5 ki te 16, ka 21.
-3x^{2}+2x+21=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 21}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 2 mō b, me 21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 21}}{2\left(-3\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+12\times 21}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-2±\sqrt{4+252}}{2\left(-3\right)}
Whakareatia 12 ki te 21.
x=\frac{-2±\sqrt{256}}{2\left(-3\right)}
Tāpiri 4 ki te 252.
x=\frac{-2±16}{2\left(-3\right)}
Tuhia te pūtakerua o te 256.
x=\frac{-2±16}{-6}
Whakareatia 2 ki te -3.
x=\frac{14}{-6}
Nā, me whakaoti te whārite x=\frac{-2±16}{-6} ina he tāpiri te ±. Tāpiri -2 ki te 16.
x=-\frac{7}{3}
Whakahekea te hautanga \frac{14}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{18}{-6}
Nā, me whakaoti te whārite x=\frac{-2±16}{-6} ina he tango te ±. Tango 16 mai i -2.
x=3
Whakawehe -18 ki te -6.
x=-\frac{7}{3} x=3
Kua oti te whārite te whakatau.
5+\left(x+2\right)x=4\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-4,x-2.
5+x^{2}+2x=4\left(x-2\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
5+x^{2}+2x=\left(4x-8\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-2.
5+x^{2}+2x=4x^{2}-16
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-8 ki te x+2 ka whakakotahi i ngā kupu rite.
5+x^{2}+2x-4x^{2}=-16
Tangohia te 4x^{2} mai i ngā taha e rua.
5-3x^{2}+2x=-16
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}+2x=-16-5
Tangohia te 5 mai i ngā taha e rua.
-3x^{2}+2x=-21
Tangohia te 5 i te -16, ka -21.
\frac{-3x^{2}+2x}{-3}=-\frac{21}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{2}{-3}x=-\frac{21}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{2}{3}x=-\frac{21}{-3}
Whakawehe 2 ki te -3.
x^{2}-\frac{2}{3}x=7
Whakawehe -21 ki te -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=7+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=7+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{64}{9}
Tāpiri 7 ki te \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{64}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{8}{3} x-\frac{1}{3}=-\frac{8}{3}
Whakarūnātia.
x=3 x=-\frac{7}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.