Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5}{x+3}+\frac{3\left(x+3\right)}{x+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{x+3}{x+3}.
\frac{5+3\left(x+3\right)}{x+3}
Tā te mea he rite te tauraro o \frac{5}{x+3} me \frac{3\left(x+3\right)}{x+3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5+3x+9}{x+3}
Mahia ngā whakarea i roto o 5+3\left(x+3\right).
\frac{14+3x}{x+3}
Whakakotahitia ngā kupu rite i 5+3x+9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{x+3}+\frac{3\left(x+3\right)}{x+3})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5+3\left(x+3\right)}{x+3})
Tā te mea he rite te tauraro o \frac{5}{x+3} me \frac{3\left(x+3\right)}{x+3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5+3x+9}{x+3})
Mahia ngā whakarea i roto o 5+3\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{14+3x}{x+3})
Whakakotahitia ngā kupu rite i 5+3x+9.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+14)-\left(3x^{1}+14\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+3\right)\times 3x^{1-1}-\left(3x^{1}+14\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+3\right)\times 3x^{0}-\left(3x^{1}+14\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 3x^{0}+3\times 3x^{0}-\left(3x^{1}x^{0}+14x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3x^{1}+3\times 3x^{0}-\left(3x^{1}+14x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3x^{1}+9x^{0}-\left(3x^{1}+14x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Mahia ngā tātaitanga.
\frac{3x^{1}+9x^{0}-3x^{1}-14x^{0}}{\left(x^{1}+3\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(3-3\right)x^{1}+\left(9-14\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-5x^{0}}{\left(x^{1}+3\right)^{2}}
Tangohia te 3 i 3 me te 14 i te 9.
\frac{-5x^{0}}{\left(x+3\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-5}{\left(x+3\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.