Whakaoti mō w
w=-\frac{\sqrt{22}i}{44}\approx -0-0.106600358i
w=\frac{\sqrt{22}i}{44}\approx 0.106600358i
Tohaina
Kua tāruatia ki te papatopenga
5+w^{2}\left(-32\right)=6+w^{2}\times 56
Tē taea kia ōrite te tāupe w ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te w^{2}.
5+w^{2}\left(-32\right)-w^{2}\times 56=6
Tangohia te w^{2}\times 56 mai i ngā taha e rua.
5-88w^{2}=6
Pahekotia te w^{2}\left(-32\right) me -w^{2}\times 56, ka -88w^{2}.
-88w^{2}=6-5
Tangohia te 5 mai i ngā taha e rua.
-88w^{2}=1
Tangohia te 5 i te 6, ka 1.
w^{2}=-\frac{1}{88}
Whakawehea ngā taha e rua ki te -88.
w=\frac{\sqrt{22}i}{44} w=-\frac{\sqrt{22}i}{44}
Kua oti te whārite te whakatau.
5+w^{2}\left(-32\right)=6+w^{2}\times 56
Tē taea kia ōrite te tāupe w ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te w^{2}.
5+w^{2}\left(-32\right)-6=w^{2}\times 56
Tangohia te 6 mai i ngā taha e rua.
-1+w^{2}\left(-32\right)=w^{2}\times 56
Tangohia te 6 i te 5, ka -1.
-1+w^{2}\left(-32\right)-w^{2}\times 56=0
Tangohia te w^{2}\times 56 mai i ngā taha e rua.
-1-88w^{2}=0
Pahekotia te w^{2}\left(-32\right) me -w^{2}\times 56, ka -88w^{2}.
-88w^{2}-1=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\left(-88\right)\left(-1\right)}}{2\left(-88\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -88 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\left(-88\right)\left(-1\right)}}{2\left(-88\right)}
Pūrua 0.
w=\frac{0±\sqrt{352\left(-1\right)}}{2\left(-88\right)}
Whakareatia -4 ki te -88.
w=\frac{0±\sqrt{-352}}{2\left(-88\right)}
Whakareatia 352 ki te -1.
w=\frac{0±4\sqrt{22}i}{2\left(-88\right)}
Tuhia te pūtakerua o te -352.
w=\frac{0±4\sqrt{22}i}{-176}
Whakareatia 2 ki te -88.
w=-\frac{\sqrt{22}i}{44}
Nā, me whakaoti te whārite w=\frac{0±4\sqrt{22}i}{-176} ina he tāpiri te ±.
w=\frac{\sqrt{22}i}{44}
Nā, me whakaoti te whārite w=\frac{0±4\sqrt{22}i}{-176} ina he tango te ±.
w=-\frac{\sqrt{22}i}{44} w=\frac{\sqrt{22}i}{44}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}