Aromātai
\frac{13w-27}{\left(w-7\right)\left(w+1\right)}
Kimi Pārōnaki e ai ki w
\frac{-13w^{2}+54w-253}{\left(\left(w-7\right)\left(w+1\right)\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)}+\frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o w+1 me w-7 ko \left(w-7\right)\left(w+1\right). Whakareatia \frac{5}{w+1} ki te \frac{w-7}{w-7}. Whakareatia \frac{8}{w-7} ki te \frac{w+1}{w+1}.
\frac{5\left(w-7\right)+8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)}
Tā te mea he rite te tauraro o \frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)} me \frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5w-35+8w+8}{\left(w-7\right)\left(w+1\right)}
Mahia ngā whakarea i roto o 5\left(w-7\right)+8\left(w+1\right).
\frac{13w-27}{\left(w-7\right)\left(w+1\right)}
Whakakotahitia ngā kupu rite i 5w-35+8w+8.
\frac{13w-27}{w^{2}-6w-7}
Whakarohaina te \left(w-7\right)\left(w+1\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)}+\frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o w+1 me w-7 ko \left(w-7\right)\left(w+1\right). Whakareatia \frac{5}{w+1} ki te \frac{w-7}{w-7}. Whakareatia \frac{8}{w-7} ki te \frac{w+1}{w+1}.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{5\left(w-7\right)+8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)})
Tā te mea he rite te tauraro o \frac{5\left(w-7\right)}{\left(w-7\right)\left(w+1\right)} me \frac{8\left(w+1\right)}{\left(w-7\right)\left(w+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{5w-35+8w+8}{\left(w-7\right)\left(w+1\right)})
Mahia ngā whakarea i roto o 5\left(w-7\right)+8\left(w+1\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13w-27}{\left(w-7\right)\left(w+1\right)})
Whakakotahitia ngā kupu rite i 5w-35+8w+8.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13w-27}{w^{2}+w-7w-7})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o w-7 ki ia tau o w+1.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13w-27}{w^{2}-6w-7})
Pahekotia te w me -7w, ka -6w.
\frac{\left(w^{2}-6w^{1}-7\right)\frac{\mathrm{d}}{\mathrm{d}w}(13w^{1}-27)-\left(13w^{1}-27\right)\frac{\mathrm{d}}{\mathrm{d}w}(w^{2}-6w^{1}-7)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(w^{2}-6w^{1}-7\right)\times 13w^{1-1}-\left(13w^{1}-27\right)\left(2w^{2-1}-6w^{1-1}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(w^{2}-6w^{1}-7\right)\times 13w^{0}-\left(13w^{1}-27\right)\left(2w^{1}-6w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Whakarūnātia.
\frac{w^{2}\times 13w^{0}-6w^{1}\times 13w^{0}-7\times 13w^{0}-\left(13w^{1}-27\right)\left(2w^{1}-6w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Whakareatia w^{2}-6w^{1}-7 ki te 13w^{0}.
\frac{w^{2}\times 13w^{0}-6w^{1}\times 13w^{0}-7\times 13w^{0}-\left(13w^{1}\times 2w^{1}+13w^{1}\left(-6\right)w^{0}-27\times 2w^{1}-27\left(-6\right)w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Whakareatia 13w^{1}-27 ki te 2w^{1}-6w^{0}.
\frac{13w^{2}-6\times 13w^{1}-7\times 13w^{0}-\left(13\times 2w^{1+1}+13\left(-6\right)w^{1}-27\times 2w^{1}-27\left(-6\right)w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{13w^{2}-78w^{1}-91w^{0}-\left(26w^{2}-78w^{1}-54w^{1}+162w^{0}\right)}{\left(w^{2}-6w^{1}-7\right)^{2}}
Whakarūnātia.
\frac{-13w^{2}+54w^{1}-253w^{0}}{\left(w^{2}-6w^{1}-7\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-13w^{2}+54w-253w^{0}}{\left(w^{2}-6w-7\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-13w^{2}+54w-253}{\left(w^{2}-6w-7\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}