Aromātai
\frac{6}{5}=1.2
Tauwehe
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 5 } { 8 } + \frac { 1 } { 5 } + \frac { 3 } { 8 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{25}{40}+\frac{8}{40}+\frac{3}{8}
Ko te maha noa iti rawa atu o 8 me 5 ko 40. Me tahuri \frac{5}{8} me \frac{1}{5} ki te hautau me te tautūnga 40.
\frac{25+8}{40}+\frac{3}{8}
Tā te mea he rite te tauraro o \frac{25}{40} me \frac{8}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{33}{40}+\frac{3}{8}
Tāpirihia te 25 ki te 8, ka 33.
\frac{33}{40}+\frac{15}{40}
Ko te maha noa iti rawa atu o 40 me 8 ko 40. Me tahuri \frac{33}{40} me \frac{3}{8} ki te hautau me te tautūnga 40.
\frac{33+15}{40}
Tā te mea he rite te tauraro o \frac{33}{40} me \frac{15}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{48}{40}
Tāpirihia te 33 ki te 15, ka 48.
\frac{6}{5}
Whakahekea te hautanga \frac{48}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}