Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

20\times 5+\left(24x+20\right)x=5\times 20
Tē taea kia ōrite te tāupe x ki -\frac{5}{6} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20\left(6x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o 6x+5,5,24x+20.
100+\left(24x+20\right)x=5\times 20
Whakareatia te 20 ki te 5, ka 100.
100+24x^{2}+20x=5\times 20
Whakamahia te āhuatanga tohatoha hei whakarea te 24x+20 ki te x.
100+24x^{2}+20x=100
Whakareatia te 5 ki te 20, ka 100.
100+24x^{2}+20x-100=0
Tangohia te 100 mai i ngā taha e rua.
24x^{2}+20x=0
Tangohia te 100 i te 100, ka 0.
x=\frac{-20±\sqrt{20^{2}}}{2\times 24}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 24 mō a, 20 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±20}{2\times 24}
Tuhia te pūtakerua o te 20^{2}.
x=\frac{-20±20}{48}
Whakareatia 2 ki te 24.
x=\frac{0}{48}
Nā, me whakaoti te whārite x=\frac{-20±20}{48} ina he tāpiri te ±. Tāpiri -20 ki te 20.
x=0
Whakawehe 0 ki te 48.
x=-\frac{40}{48}
Nā, me whakaoti te whārite x=\frac{-20±20}{48} ina he tango te ±. Tango 20 mai i -20.
x=-\frac{5}{6}
Whakahekea te hautanga \frac{-40}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=0 x=-\frac{5}{6}
Kua oti te whārite te whakatau.
x=0
Tē taea kia ōrite te tāupe x ki -\frac{5}{6}.
20\times 5+\left(24x+20\right)x=5\times 20
Tē taea kia ōrite te tāupe x ki -\frac{5}{6} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20\left(6x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o 6x+5,5,24x+20.
100+\left(24x+20\right)x=5\times 20
Whakareatia te 20 ki te 5, ka 100.
100+24x^{2}+20x=5\times 20
Whakamahia te āhuatanga tohatoha hei whakarea te 24x+20 ki te x.
100+24x^{2}+20x=100
Whakareatia te 5 ki te 20, ka 100.
24x^{2}+20x=100-100
Tangohia te 100 mai i ngā taha e rua.
24x^{2}+20x=0
Tangohia te 100 i te 100, ka 0.
\frac{24x^{2}+20x}{24}=\frac{0}{24}
Whakawehea ngā taha e rua ki te 24.
x^{2}+\frac{20}{24}x=\frac{0}{24}
Mā te whakawehe ki te 24 ka wetekia te whakareanga ki te 24.
x^{2}+\frac{5}{6}x=\frac{0}{24}
Whakahekea te hautanga \frac{20}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{5}{6}x=0
Whakawehe 0 ki te 24.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=\left(\frac{5}{12}\right)^{2}
Whakawehea te \frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{12}. Nā, tāpiria te pūrua o te \frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{25}{144}
Pūruatia \frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{5}{12}\right)^{2}=\frac{25}{144}
Tauwehea x^{2}+\frac{5}{6}x+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{12}=\frac{5}{12} x+\frac{5}{12}=-\frac{5}{12}
Whakarūnātia.
x=0 x=-\frac{5}{6}
Me tango \frac{5}{12} mai i ngā taha e rua o te whārite.
x=0
Tē taea kia ōrite te tāupe x ki -\frac{5}{6}.