Aromātai
\frac{3x^{2}+41x+81}{6x\left(x+3\right)}
Whakaroha
\frac{3x^{2}+41x+81}{6x\left(x+3\right)}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{6\left(x+3\right)}+\frac{x+9}{2x}
Tauwehea te 6x+18.
\frac{5x}{6x\left(x+3\right)}+\frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6\left(x+3\right) me 2x ko 6x\left(x+3\right). Whakareatia \frac{5}{6\left(x+3\right)} ki te \frac{x}{x}. Whakareatia \frac{x+9}{2x} ki te \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{5x+\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{5x}{6x\left(x+3\right)} me \frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5x+3x^{2}+9x+27x+81}{6x\left(x+3\right)}
Mahia ngā whakarea i roto o 5x+\left(x+9\right)\times 3\left(x+3\right).
\frac{41x+3x^{2}+81}{6x\left(x+3\right)}
Whakakotahitia ngā kupu rite i 5x+3x^{2}+9x+27x+81.
\frac{3\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{6x\left(x+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{41x+3x^{2}+81}{6x\left(x+3\right)}.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x\left(x+3\right)}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Whakarohaina te 2x\left(x+3\right).
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}\right)-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Hei kimi i te tauaro o -\frac{1}{6}\sqrt{709}-\frac{41}{6}, kimihia te tauaro o ia taurangi.
\frac{\left(x+\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Ko te tauaro o -\frac{1}{6}\sqrt{709} ko \frac{1}{6}\sqrt{709}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Ko te tauaro o -\frac{41}{6} ko \frac{41}{6}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Hei kimi i te tauaro o \frac{1}{6}\sqrt{709}-\frac{41}{6}, kimihia te tauaro o ia taurangi.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)}{2x^{2}+6x}
Ko te tauaro o -\frac{41}{6} ko \frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\sqrt{709}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x+\frac{1}{6}\sqrt{709}+\frac{41}{6} ki ia tau o x-\frac{1}{6}\sqrt{709}+\frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Whakareatia te \sqrt{709} ki te \sqrt{709}, ka 709.
\frac{x^{2}+x\times \frac{41}{6}+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Pahekotia te x\left(-\frac{1}{6}\right)\sqrt{709} me \frac{1}{6}\sqrt{709}x, ka 0.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709}{6}\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Whakareatia te \frac{1}{6} ki te 709, ka \frac{709}{6}.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709\left(-1\right)}{6\times 6}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me whakarea te \frac{709}{6} ki te -\frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+x\times \frac{41}{6}+\frac{-709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{709\left(-1\right)}{6\times 6}.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Ka taea te hautanga \frac{-709}{36} te tuhi anō ko -\frac{709}{36} mā te tango i te tohu tōraro.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1\times 41}{6\times 6}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me whakarea te \frac{1}{6} ki te \frac{41}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Pahekotia te x\times \frac{41}{6} me \frac{41}{6}x, ka \frac{41}{3}x.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41\left(-1\right)}{6\times 6}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me whakarea te \frac{41}{6} ki te -\frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{-41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{41\left(-1\right)}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}-\frac{41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Ka taea te hautanga \frac{-41}{36} te tuhi anō ko -\frac{41}{36} mā te tango i te tohu tōraro.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Pahekotia te \frac{41}{36}\sqrt{709} me -\frac{41}{36}\sqrt{709}, ka 0.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41\times 41}{6\times 6}}{2x^{2}+6x}
Me whakarea te \frac{41}{6} ki te \frac{41}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{1681}{36}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{41\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x+\frac{-709+1681}{36}}{2x^{2}+6x}
Tā te mea he rite te tauraro o -\frac{709}{36} me \frac{1681}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{2}+\frac{41}{3}x+\frac{972}{36}}{2x^{2}+6x}
Tāpirihia te -709 ki te 1681, ka 972.
\frac{x^{2}+\frac{41}{3}x+27}{2x^{2}+6x}
Whakawehea te 972 ki te 36, kia riro ko 27.
\frac{5}{6\left(x+3\right)}+\frac{x+9}{2x}
Tauwehea te 6x+18.
\frac{5x}{6x\left(x+3\right)}+\frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6\left(x+3\right) me 2x ko 6x\left(x+3\right). Whakareatia \frac{5}{6\left(x+3\right)} ki te \frac{x}{x}. Whakareatia \frac{x+9}{2x} ki te \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{5x+\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{5x}{6x\left(x+3\right)} me \frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5x+3x^{2}+9x+27x+81}{6x\left(x+3\right)}
Mahia ngā whakarea i roto o 5x+\left(x+9\right)\times 3\left(x+3\right).
\frac{41x+3x^{2}+81}{6x\left(x+3\right)}
Whakakotahitia ngā kupu rite i 5x+3x^{2}+9x+27x+81.
\frac{3\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{6x\left(x+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{41x+3x^{2}+81}{6x\left(x+3\right)}.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x\left(x+3\right)}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Whakarohaina te 2x\left(x+3\right).
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}\right)-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Hei kimi i te tauaro o -\frac{1}{6}\sqrt{709}-\frac{41}{6}, kimihia te tauaro o ia taurangi.
\frac{\left(x+\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Ko te tauaro o -\frac{1}{6}\sqrt{709} ko \frac{1}{6}\sqrt{709}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Ko te tauaro o -\frac{41}{6} ko \frac{41}{6}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Hei kimi i te tauaro o \frac{1}{6}\sqrt{709}-\frac{41}{6}, kimihia te tauaro o ia taurangi.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)}{2x^{2}+6x}
Ko te tauaro o -\frac{41}{6} ko \frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\sqrt{709}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x+\frac{1}{6}\sqrt{709}+\frac{41}{6} ki ia tau o x-\frac{1}{6}\sqrt{709}+\frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Whakareatia te \sqrt{709} ki te \sqrt{709}, ka 709.
\frac{x^{2}+x\times \frac{41}{6}+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Pahekotia te x\left(-\frac{1}{6}\right)\sqrt{709} me \frac{1}{6}\sqrt{709}x, ka 0.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709}{6}\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Whakareatia te \frac{1}{6} ki te 709, ka \frac{709}{6}.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709\left(-1\right)}{6\times 6}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me whakarea te \frac{709}{6} ki te -\frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+x\times \frac{41}{6}+\frac{-709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{709\left(-1\right)}{6\times 6}.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Ka taea te hautanga \frac{-709}{36} te tuhi anō ko -\frac{709}{36} mā te tango i te tohu tōraro.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1\times 41}{6\times 6}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me whakarea te \frac{1}{6} ki te \frac{41}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Pahekotia te x\times \frac{41}{6} me \frac{41}{6}x, ka \frac{41}{3}x.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41\left(-1\right)}{6\times 6}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Me whakarea te \frac{41}{6} ki te -\frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{-41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{41\left(-1\right)}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}-\frac{41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Ka taea te hautanga \frac{-41}{36} te tuhi anō ko -\frac{41}{36} mā te tango i te tohu tōraro.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Pahekotia te \frac{41}{36}\sqrt{709} me -\frac{41}{36}\sqrt{709}, ka 0.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41\times 41}{6\times 6}}{2x^{2}+6x}
Me whakarea te \frac{41}{6} ki te \frac{41}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{1681}{36}}{2x^{2}+6x}
Mahia ngā whakarea i roto i te hautanga \frac{41\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x+\frac{-709+1681}{36}}{2x^{2}+6x}
Tā te mea he rite te tauraro o -\frac{709}{36} me \frac{1681}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{2}+\frac{41}{3}x+\frac{972}{36}}{2x^{2}+6x}
Tāpirihia te -709 ki te 1681, ka 972.
\frac{x^{2}+\frac{41}{3}x+27}{2x^{2}+6x}
Whakawehea te 972 ki te 36, kia riro ko 27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}