Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5}{6\sqrt{3}+12}
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te \sqrt{3}+2.
\frac{5\left(6\sqrt{3}-12\right)}{\left(6\sqrt{3}+12\right)\left(6\sqrt{3}-12\right)}
Whakangāwaritia te tauraro o \frac{5}{6\sqrt{3}+12} mā te whakarea i te taurunga me te tauraro ki te 6\sqrt{3}-12.
\frac{5\left(6\sqrt{3}-12\right)}{\left(6\sqrt{3}\right)^{2}-12^{2}}
Whakaarohia te \left(6\sqrt{3}+12\right)\left(6\sqrt{3}-12\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(6\sqrt{3}-12\right)}{6^{2}\left(\sqrt{3}\right)^{2}-12^{2}}
Whakarohaina te \left(6\sqrt{3}\right)^{2}.
\frac{5\left(6\sqrt{3}-12\right)}{36\left(\sqrt{3}\right)^{2}-12^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{5\left(6\sqrt{3}-12\right)}{36\times 3-12^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{5\left(6\sqrt{3}-12\right)}{108-12^{2}}
Whakareatia te 36 ki te 3, ka 108.
\frac{5\left(6\sqrt{3}-12\right)}{108-144}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\frac{5\left(6\sqrt{3}-12\right)}{-36}
Tangohia te 144 i te 108, ka -36.
\frac{30\sqrt{3}-60}{-36}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 6\sqrt{3}-12.