Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5}{6}x\times \frac{18}{25}
Whakahekea te hautanga \frac{36}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5\times 18}{6\times 25}x
Me whakarea te \frac{5}{6} ki te \frac{18}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{90}{150}x
Mahia ngā whakarea i roto i te hautanga \frac{5\times 18}{6\times 25}.
\frac{3}{5}x
Whakahekea te hautanga \frac{90}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{6}x\times \frac{18}{25})
Whakahekea te hautanga \frac{36}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 18}{6\times 25}x)
Me whakarea te \frac{5}{6} ki te \frac{18}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{90}{150}x)
Mahia ngā whakarea i roto i te hautanga \frac{5\times 18}{6\times 25}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{5}x)
Whakahekea te hautanga \frac{90}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{3}{5}x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{3}{5}x^{0}
Tango 1 mai i 1.
\frac{3}{5}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3}{5}
Mō tētahi kupu t, t\times 1=t me 1t=t.