Whakaoti mō m
m=-26
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{6}m-\frac{5}{12}-\frac{7}{8}m=\frac{2}{3}
Tangohia te \frac{7}{8}m mai i ngā taha e rua.
-\frac{1}{24}m-\frac{5}{12}=\frac{2}{3}
Pahekotia te \frac{5}{6}m me -\frac{7}{8}m, ka -\frac{1}{24}m.
-\frac{1}{24}m=\frac{2}{3}+\frac{5}{12}
Me tāpiri te \frac{5}{12} ki ngā taha e rua.
-\frac{1}{24}m=\frac{8}{12}+\frac{5}{12}
Ko te maha noa iti rawa atu o 3 me 12 ko 12. Me tahuri \frac{2}{3} me \frac{5}{12} ki te hautau me te tautūnga 12.
-\frac{1}{24}m=\frac{8+5}{12}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{5}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{24}m=\frac{13}{12}
Tāpirihia te 8 ki te 5, ka 13.
m=\frac{13}{12}\left(-24\right)
Me whakarea ngā taha e rua ki te -24, te tau utu o -\frac{1}{24}.
m=\frac{13\left(-24\right)}{12}
Tuhia te \frac{13}{12}\left(-24\right) hei hautanga kotahi.
m=\frac{-312}{12}
Whakareatia te 13 ki te -24, ka -312.
m=-26
Whakawehea te -312 ki te 12, kia riro ko -26.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}