Whakaoti mō x
x\leq 3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{6}\times 3+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te 3-x.
\frac{5\times 3}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Tuhia te \frac{5}{6}\times 3 hei hautanga kotahi.
\frac{15}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Whakareatia te 5 ki te 3, ka 15.
\frac{5}{2}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}
Whakareatia te \frac{5}{6} ki te -1, ka -\frac{5}{6}.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x-\frac{1}{2}\left(-4\right)\geq \frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te x-4.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{-\left(-4\right)}{2}\geq \frac{1}{2}
Tuhia te -\frac{1}{2}\left(-4\right) hei hautanga kotahi.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{4}{2}\geq \frac{1}{2}
Whakareatia te -1 ki te -4, ka 4.
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+2\geq \frac{1}{2}
Whakawehea te 4 ki te 2, kia riro ko 2.
\frac{5}{2}-\frac{4}{3}x+2\geq \frac{1}{2}
Pahekotia te -\frac{5}{6}x me -\frac{1}{2}x, ka -\frac{4}{3}x.
\frac{5}{2}-\frac{4}{3}x+\frac{4}{2}\geq \frac{1}{2}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{5+4}{2}-\frac{4}{3}x\geq \frac{1}{2}
Tā te mea he rite te tauraro o \frac{5}{2} me \frac{4}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{2}-\frac{4}{3}x\geq \frac{1}{2}
Tāpirihia te 5 ki te 4, ka 9.
-\frac{4}{3}x\geq \frac{1}{2}-\frac{9}{2}
Tangohia te \frac{9}{2} mai i ngā taha e rua.
-\frac{4}{3}x\geq \frac{1-9}{2}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{9}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{4}{3}x\geq \frac{-8}{2}
Tangohia te 9 i te 1, ka -8.
-\frac{4}{3}x\geq -4
Whakawehea te -8 ki te 2, kia riro ko -4.
x\leq -4\left(-\frac{3}{4}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{4}, te tau utu o -\frac{4}{3}. I te mea he tōraro a -\frac{4}{3}, ka huri te ahunga koreōrite.
x\leq 3
Whakareatia -4 ki te -\frac{3}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}