Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{6}\times 2x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te 2x+14.
\frac{5\times 2}{6}x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Tuhia te \frac{5}{6}\times 2 hei hautanga kotahi.
\frac{10}{6}x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Whakareatia te 5 ki te 2, ka 10.
\frac{5}{3}x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{3}x+\frac{5\times 14}{6}=\frac{7}{12}\left(3x+20\right)
Tuhia te \frac{5}{6}\times 14 hei hautanga kotahi.
\frac{5}{3}x+\frac{70}{6}=\frac{7}{12}\left(3x+20\right)
Whakareatia te 5 ki te 14, ka 70.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{12}\left(3x+20\right)
Whakahekea te hautanga \frac{70}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{12}\times 3x+\frac{7}{12}\times 20
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{7}{12} ki te 3x+20.
\frac{5}{3}x+\frac{35}{3}=\frac{7\times 3}{12}x+\frac{7}{12}\times 20
Tuhia te \frac{7}{12}\times 3 hei hautanga kotahi.
\frac{5}{3}x+\frac{35}{3}=\frac{21}{12}x+\frac{7}{12}\times 20
Whakareatia te 7 ki te 3, ka 21.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{7}{12}\times 20
Whakahekea te hautanga \frac{21}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{7\times 20}{12}
Tuhia te \frac{7}{12}\times 20 hei hautanga kotahi.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{140}{12}
Whakareatia te 7 ki te 20, ka 140.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{35}{3}
Whakahekea te hautanga \frac{140}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{5}{3}x+\frac{35}{3}-\frac{7}{4}x=\frac{35}{3}
Tangohia te \frac{7}{4}x mai i ngā taha e rua.
-\frac{1}{12}x+\frac{35}{3}=\frac{35}{3}
Pahekotia te \frac{5}{3}x me -\frac{7}{4}x, ka -\frac{1}{12}x.
-\frac{1}{12}x=\frac{35}{3}-\frac{35}{3}
Tangohia te \frac{35}{3} mai i ngā taha e rua.
-\frac{1}{12}x=0
Tangohia te \frac{35}{3} i te \frac{35}{3}, ka 0.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te -\frac{1}{12} e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}