Aromātai
-\frac{4}{9}\approx -0.444444444
Tauwehe
-\frac{4}{9} = -0.4444444444444444
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\times 4}{6\times 15}-\frac{3}{5}\times \frac{20}{18}
Me whakarea te \frac{5}{6} ki te \frac{4}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{20}{90}-\frac{3}{5}\times \frac{20}{18}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 4}{6\times 15}.
\frac{2}{9}-\frac{3}{5}\times \frac{20}{18}
Whakahekea te hautanga \frac{20}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{2}{9}-\frac{3}{5}\times \frac{10}{9}
Whakahekea te hautanga \frac{20}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{9}-\frac{3\times 10}{5\times 9}
Me whakarea te \frac{3}{5} ki te \frac{10}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{9}-\frac{30}{45}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 10}{5\times 9}.
\frac{2}{9}-\frac{2}{3}
Whakahekea te hautanga \frac{30}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{2}{9}-\frac{6}{9}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{2}{9} me \frac{2}{3} ki te hautau me te tautūnga 9.
\frac{2-6}{9}
Tā te mea he rite te tauraro o \frac{2}{9} me \frac{6}{9}, me tango rāua mā te tango i ō raua taurunga.
-\frac{4}{9}
Tangohia te 6 i te 2, ka -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}