Aromātai
\frac{175}{48}\approx 3.645833333
Tauwehe
\frac{5 ^ {2} \cdot 7}{2 ^ {4} \cdot 3} = 3\frac{31}{48} = 3.6458333333333335
Pātaitai
Arithmetic
\frac { 5 } { 6 } \cdot ( \frac { 7 } { 4 } - \frac { 3 } { 8 } ) + \frac { 5 } { 2 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{6}\left(\frac{14}{8}-\frac{3}{8}\right)+\frac{5}{2}
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{7}{4} me \frac{3}{8} ki te hautau me te tautūnga 8.
\frac{5}{6}\times \frac{14-3}{8}+\frac{5}{2}
Tā te mea he rite te tauraro o \frac{14}{8} me \frac{3}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{6}\times \frac{11}{8}+\frac{5}{2}
Tangohia te 3 i te 14, ka 11.
\frac{5\times 11}{6\times 8}+\frac{5}{2}
Me whakarea te \frac{5}{6} ki te \frac{11}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{55}{48}+\frac{5}{2}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 11}{6\times 8}.
\frac{55}{48}+\frac{120}{48}
Ko te maha noa iti rawa atu o 48 me 2 ko 48. Me tahuri \frac{55}{48} me \frac{5}{2} ki te hautau me te tautūnga 48.
\frac{55+120}{48}
Tā te mea he rite te tauraro o \frac{55}{48} me \frac{120}{48}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{175}{48}
Tāpirihia te 55 ki te 120, ka 175.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}