Aromātai
\frac{11}{6}\approx 1.833333333
Tauwehe
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 5 } { 6 } + \frac { 7 } { 19 } + \frac { 12 } { 19 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{95}{114}+\frac{42}{114}+\frac{12}{19}
Ko te maha noa iti rawa atu o 6 me 19 ko 114. Me tahuri \frac{5}{6} me \frac{7}{19} ki te hautau me te tautūnga 114.
\frac{95+42}{114}+\frac{12}{19}
Tā te mea he rite te tauraro o \frac{95}{114} me \frac{42}{114}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{137}{114}+\frac{12}{19}
Tāpirihia te 95 ki te 42, ka 137.
\frac{137}{114}+\frac{72}{114}
Ko te maha noa iti rawa atu o 114 me 19 ko 114. Me tahuri \frac{137}{114} me \frac{12}{19} ki te hautau me te tautūnga 114.
\frac{137+72}{114}
Tā te mea he rite te tauraro o \frac{137}{114} me \frac{72}{114}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{209}{114}
Tāpirihia te 137 ki te 72, ka 209.
\frac{11}{6}
Whakahekea te hautanga \frac{209}{114} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}